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Abstract (unclassified)

9This report contains a survey of two techniques that can be used in the field of data fusion: temporal

reasoning and truth maintenance. The automatic fusion of intelligence reports necessitates taking into
* account the factor time. Incoming messages can lead to new interpretations of the current battlefield

situation, changing previously made hypotheses. A data fusion system must also be able to make a prediction

of what sightings are to be expected, e.g. in the case of columns of vehicles moving pa-t different sensors.

This report describes a temporal database system that can capture (some part) of the volatility of the

intelligence prozessing domain. While processing intelligence reports there is always an amount of

uncertainty and incompleteness that has to be dealt with. So there is a need for maintaining different lines of

reasoning or hypotheses pertaining to the battlefield situation concurrently, and incorporating new

information as it becomes available. In this report an assumption-based truth maintenance system provides a

framework in which this problem can be solved. A prototype has been developed to demonstrate the

applicability of the aforementioned techniques. This prototype, callel Mefisto (Modular Environment for

Fusion and Interpretation of Sensor data in Tracking Opposing forces), is a simple knowledge-based system

integrated with a temporal truth maintenance facility.
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SamenvAtting (ongerubriceerd)

Dit rapport bevat een overzicht van twee technieken die kunnen worden gebruikt op het gebied van

dataflisie: "temporal rtasoning" en "truth maintenance". De automnatische fusie van inlichtingenrapporten

brengt de noodzaak met zich mee omt de factor tijd in de beschouwing te betrekken. Binnenkomende

berichten kunnen leiden tot nieuwe interpretaties van de actuele situatic op het gevechtsveld. waaxbij eerder

opgestelcle Itypotheseni worden aangepast. Een datafusie-systeemn moet ook in staat zijn om een voorsnelling

te doen over te verwachten waamemningen van bijvootteeld kolonnes voertuigen die zich langs verschillende

semsoren voortbewegen. In dit rapport is een "temporal database system" beschreven dat (een deel van) de
vluchtigheid" van het inlichtingenverweticingsproces kan vangen. Bij het verwerken van inlichtingen-

rapporten moet altijd rekening gehouden worden met een bepaalde mate van onzekerheid en onvolledigheid.

Hierdoor ontstaat de noodzaak amn tegelijkertijd verschillende nxdeneringen of hypothes-n ten aanzien van de

situatie op bet gevechtsveld te onderhouden en deze. zodra nieuwe informatie beschikbaar komt,

overeenkomstig te wijzigen. In dit rapport is een "assumption-based truth maintenance system" beschrevefl,

dat cen oplossing biedi voor deze problemen. Er is een prototype ontwikkeld omn de bruikbaarheid van de

eerder genoemde'technieken te demon'streren. Dit prototype, genzamd Mefisto (Modular Environment for

Fusion and Interpretation of Sensor data in tracking Opposing forces), is een cenvoudig kennissyst~eem

gerntegreerd met faciliteiten voor "temnporal truth maintenance".
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1 Introduction

This report is a sequel to (Keene & Perm, 1990], which gave a general overview of various

approaches to data fusion in the military intelligence processing domain. In the following chapters

we will focus on two techniques which are of importance to an automatic data fusion system:
temporal reasoning and truth, maintenance.

Temporal reasoning is "reasoning about time". In itself this statement may not seem that

surprising. Of course automated real-time systems exist that interact with physical processes in
the real world: these systems have to keep track of time, in one way or another. However, an
important observation can be made in the command and control domain: not many systems art in

use that can reason about time. Especially the process of data fussion is tightly connected with
time. Sensor data amfives at different points in dme, without the assurance that it can be
interpreted and processed sequentially. It can be stated that in data fusion applications the non-
monotonic characteristics prevail.

Truth maintenance is a method to monitor the truth status of elements in a data base system. This

status may depend on assumptions which lay at the roots of ,hese data elements. Should these

assumptions become invalid, then the truth status of conclusions which they support (i.e. other
data elements) also changes. A truth maintenance system provides a framework in which
dependencies between data elements can be represented explicitly. If there is some change in one

element, then the consequences for other elements which are dependent on it, will be deduced.

While processing intelligence reports temporal reasoning and truth maintenance are to an extent

complementary. Suppose that at one point in time there is a certain amount of information

available from which conclusions about the battlefield situation can be drawn. This information

and the ensuing conclusions could be called "time-stamped". If at some later point in time

additional 'information becomes available, contradicting 'or augmenting information already
received, it could be necessary to adapt earlier made conclusions concerning the battlefield.

* The following topics are presented in the remainder of this report. Chapter 2 gives a more general
* description of temporal reasoning and truth maintenance. The interest is focused on different

g ~approaches to temporal reasoning and the relation between this technique and data Muson. A
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concise treatment of non-monotonic reasoning' forms the starting point of the discussion on truth

maintenance systems, culminating in a presentation of the assumption-based variety. These

theoretical notions .,re operationalizbd in chapter 3, which contains a description of the analysis

and design process of the Mefisto prototype (Modular Envinr vnent for Fusion and Interpretation

of Sensor data in Tacking Opposing forces). After defining the battlefield environment, two main

points are addressed.: Firstly, the structure and functionality of Mefisto. Secondly, the extent to

which the theoretical notions of the previous chapter have been incorporated into this prototype

system. Chaptet 4 contains the conclusions and recommendations based on our experiences while

building Mefisto. After summing up the acronyms, abbreviations and references, this report

concludes with appendices containing excerpts from the Mefisto code for the temporal query

language, the assumption-based truth maintenance system and the interaction between these two.

-7

----!----' .. 4T.
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2 Temporal reasoning and truth maintenance

2.1 Introduction

The main goal of data fusion is to combine the available data on a certain area of interest to

achieve as best an estimate as possible of the objects in the area, their groupings, movements and

combat activities. The da.ta may come from different sensors, is governed by, uncertainty and

incompleteness, and are "snapshots" of.a continuously changing domain. We note the distinction

between sensor fusion, which refers to the correlation of low-level sensor data (e.g. radar, infra-

red), and data fusion, which is mainly concerned with combining data from the vehicle level up to

complex unit aggregations.

Generally, information in the form of incoming reports will define some activity associated with a

unit of an opposing force, describing vehicle types, equipment and personnel sighted, movements

with an associated direction and speed, location ani time of the sighting. It must be decided what

type of unit the report describes and possibly the identity of the unit. This classification associates

the reporn with a specific unit typ.. An attempt is made to confirm the sighting by checking units

established from earlier reports, to wee if and how the information matches the current known

situation. It will often be the case that there is no unique solution for the correlation of the

reported information, a report may refer to a unit associated with an earlier report, but it may be

another unit, not currently known to exist on tliz battlefield. Thus, it will be necessary to keep

track of units in both space and time. When separate units have been distinguished, the next step

will be the aggregation of units into larger unit formations. The propagation of assumptions when

e.g. a unit iP taken to be such and stch or assumed to be part of a certain encompassing unit has to

be tracked as well. Consequently, it will be necessary to maintain multiple lines of reasoning

about the area of interest.

Temporal aspects predominate in dtta fusion. In the first place, the situation at time now based on

the current informat;on is important. Typically, the currently available information taken at face

value will not be sufficient for determining a cotcrent picture of the actual situation. It is

* necessary to be able to engage in some form of prediction. An example is the tracking of units in

the system to answer queries such as "Which units could be in the vicinity of location X within



TNO rport

Page
9

f one hour from now?" An answer involves estimating the zone that is relevant, establishing the

units that are in, that zone at time now, associating information as to velocities and movement

capabilities. direction of movement, etc. This also serves to indicate that temporal reasoning is

very closely related to spatial reasoning.

Apart from prediction, a retroactive adaptation of the current situation will often be necessary.

This is the case when for instance an incoming report provides information contradicting a

previous report, but also applies to sensors such as a drone, an unmanned airborne sensor that may

provide information only after its flight. Both predictive and retroactive adaptations therefore

require a mechanism for recording assumptions that may at a later stage become invalid.

Temporal reasoning thus requires a form of truth maintenance, and as outlined above so does the

very nature of data fusion. The assumption-based truth maintenance system (ATMS) is

recognized as the most promising means for this purpose. This chapter addresses techniques for

both temporal reasoning and truth maintenance.

2.2 Temporal reasoning

2.2.1 Approaches to temporal reasoning
Time is a significant factor in common-sense reasoning, yet it is not actually dealt with in

conventional database systems. The contents of the database are cor.nidered to be timelessly true,

defied only by the explicit deletion from the database. The idea behind a temporal database is to

represent the notion that information about the world is generally incomplete and continuously

changing. An important aim is to take into account that there are many possible states of affairs

(worlds. contexts, situations), based on conditional predictions to fill gaps resulting from the

incompleteness of information. The known infermation is stored in a temporal database, and a

problem solver constructs a number of possible completions of the knowledge, choosing the most

likely solution. This can not be represented by the "timelessly true" facts in e.g. a relational

database, and without some method of completing this knowledge, because this would add up to

exactly one state of affairs.

Taking the rehltional database model as the current convention, we l ave a collection of relations,

each relation consisting of a set of tuples with an equivalent set of attributes, represented as tables.

The current contents of the tables form the state of the database, adapted by the operations insert,
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delete and update. Only the current state of the database is retained, past states are discarded. An

extension of this is the representation of the historical -state per relation in a historical database.

Previous states of the database are not retained as such, but are represented in the history ot each

relation in the database. Modifications can be made to the relations when errors are detected or in

answer to update requests. This is accomplished by adding historical records each time an entry is

updated. Thus, historical databases support arbitrary modification and represent current

knowledge about the present, as do conventional dambases, but they also represent current

knowledge about the past. An example of a (laboratory) database management system (DIMS)

that offers facilities for the implementation of a historical database is POSTGRES ([Stonebraker

et al., 1986: ;'.onebraker et al., 1990]). A further extension is outlined in [Snodgrass & Ahn,

19861. for a bibl~1graphy on temporal datzhases we refer to [Stain & Snodg'ass, 1989].

A more formal view is the approach taken when applying temporal logics (modal logics) by

extending the predicate calculus with temporal operators, describing notions such as "always from

now on", "some time in the past", etc., formulated in the context of a possible worlds semantics.

For instance, the notion 'P was valid at some time T" would be true if P is true in all possL.:e

worlds "covering" T. The strict formalism ensures that logic programs governed by tenmporal logic

are consistent and complete, however this formalism is a major drawback as well, due to the

unnatural representation. There is a large number of theories on temporal !ogic, we refer to

[Galton, 1987].

Taking in mind our domain, we Kre interested foremost in the following sequence of activities: the

recording of incoming messages, which are transferred into battlefield entities, which in turn are

grouped into formations corresponding to known data on order of battle. A data fusion system

needs the functionality of retroactive adaptation of database records. The history of the. actual

situation at some time is extremely important. When new information points out that wnat was

thought to be a tank battalion was in fact a complete regiment it must be possible to update this in

the corresponding (historical) tuple in the database. This is further clarified by taking in mind

situation assessment and anticipation of future enemy movements.

It is our view that temporal information in the context of data fusion can be sufficiently

represented by facilities supporting historical queries, We advocate an approach that ties
* somewhere in between the above, such as used in the planning system Time Map Manager

(TMM) of Dean (Dean, 1985; Dean, 1986; Dean & McDermott, 1987; Firby & McDermott,

I i•
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1987]. It is a computational approach, centering around techniques .for man•aging a database of

assertions corresponding to the occurrence of everts and the persistence of their effects over time.

The approach takes into account that tempora! information js incomplete and defeasible.

Therefore, the approach stresses the necessity that a problem solver has to be able to make

predictions on the basis of certain ass'imptinns, that these assumptions may at some later time

become invalid and hence the prediction3 based on these, assumptions as well. Moreover, it is

recognized that most common-gense reasoning involves reasoning about temporal events and that

durations of events are often known within metric bounds. This is reflected in the choice of

"bringing time into the relations", replacing classic assertions by data structures incorporating

interval representations of temporal validity. We will take this approachi as a starting point, with

the main objective of determining if and how it can be utilized for the representation of temporal

dependencies in the domair of data fusion.

2.2.2 Temporal reasor 'ng and data fusion
The strategy behind temporal reasoning is what [Dean & McDermott, 1987] refer to as shallow

temporal, reasoning.. Shallow temporal reasoning is characterized by breaking down the reasoning

process into the following steps:

I. Generate a set of candidate hypotheses;

2. Select one hypothesis from among the candidates;

3. Use the selected hypothesis as a bamis for prediction;

4. Respond to unforeseen consequences noticed in the course of prediction.

The hypothtses correspond to the possible states of affairs, which are the result of the known

information on events, their effects, their time of occurrence and duration. For instance, a

hypothesis based on the sightings of certain units in each other's vicinity could be the indication of

tIe persence of a larger encompassing unit.

Tht: selected hypothesis is then the basis for making predictions depending upon the hypothesis.

Predictive inferences can take the form of what bean calls controlled forward inferences or

automatic projections [Dean, 1986]. Controlled forward inferences are achieved by the

application of forward chaining rules, directly adding deductions to the database (for example, the

deduction that a new report refers to a tank company because the conditions as to vehicle types
. 4-
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and quantities are satisfied). Automatic projection is a mechanism that responds to trigger-events.

If antecedent conditions are satisfied and a trigger event occur, then after some delay a

consequent effect is added to the database.

Finally, thi fourth step is described as responding to unforeseen consequences noticed in the

course of prediction. It entails foremost the need for truth maintenance, for keeping track of the

assumptions underlying a certain hypothesis, and when assumptions become invalid, invalidating

the hypothesis and replacing it by another.

The above cyclic description of shallow temporp! reasoning is in effect a concise formulation of

the essential process underlying data fusion. As reports containing sensor data are transferred into

associated units by a classification process, hypotheses are generated concerning the type of unit

invol'.ed. A unit is assumed to have some unit type at say, time To, at a later time T, the unit is

aggregated into a larger unit, which will be further used for concluding aspects about the

battlefield situation at time T2. When information at time T 3 allows the conclusion that the

classificatior' of the unit was incorrect after all, all inferences made since then using the unit

classification as a condition must be defied. This work is done by a truth maintenance system,

which must reply with a list of the conclusions added to the database that are thl~s defied.

Effectively, the database situation must thea be turned back to time To in the sense that the

conclusions are removed from the database (in fact, they will not be deleted but "clipped" with T3

as endtime, we refer to the next paragraph) and an optional re-run of the inference mechanism,

with the new unit type at To will then result in new conclusions, effective ftom some time T4.

A temporal reasoning application will typically require a temporal database, a (temporal) query

language, an inference mechanism and some form of truth maintenance system [Dean &

McDermott, 19871. A problem solver will incorporate a temporal query language and an inference

mechanism. Temporal asertions are stored in a database, which can be queried by the problem

solver. The temporal assertions and derivations based on these assertions are passed to"a truth

maintenance system (I'MS), which performs the bookkeeping of assumptions and justifications,

and has access to the database as well. The TMS notifies the problem solver of changes in the

validity of nodes. The main notions concerning the temporal database, a temporal query language

and inference will be addressed in the next paragraph. Truth maintenance is addressed in section

2.3.

,!.
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2.2.3 A temporal taxonomy
The basic temporal notion is the interval. An interval is a pair of points, consisting of a begin- and
an endpoint, such that the beginpoint pi-cedes or coincides with the eilpoint. In the latter case it

is a single timepoint, which is thus represented in two dimensions as an interval (pointlpoinl).

An occarion (Dean also refers to "time token") 's a fact or instantiated proposition. It has

associated with it a temporal distance statement that me will call timedist, which is the central data

structure contained in the temporal database. The timedist structure represents the duration of an

occasion, stating the begin- and endpoints, constrained within a lower bound and an upper bound.

The following representation of the timedist structure Is the notation in Prolog:

timedist (begin(Qccasion), end(C:casion),Lowi igh).

The timedist structure records relative time, and ab..ute time is calculated using only relative

temporal distances (Dean & McDermott, 19871. The reason is that Dean's Time Map Manager

concerns the domain of planning, which deals mostly with relative time, e.g. the duration of taskl

is known to have a lower bound of 20 minutes, and an upper bound of 35 minutes, whereas the

precise begin- and endtimes of taskl are not known beforehand, but the end of taskI must precede

the beginning of task2, etc. Thus the minimum and maxiimmn durations of an occasion are
recorded, related to the begin- and endpoints, which arp expressed as "begin(Occasion)" and

"end(Occasion)". The domain of data fusion also incorporates relative temporal information, e.g.
it may be known that the displhcement of a unit from location A to location B has a certain

duration, or that given the sighting of some unit this implies that a certain otherunit is expected to
pass within an hour.

The timedist structure explicitly contains relative temporal information. However, it implicitly'

represents absolute temporal information, which will be explained further on. This allows the

representation of default information, because given a timepoint and an occasion such that its

begin-to-end interval does not contain that timepoint, this implies that the occasion was not valid

at that time. This is a powerful way of recording historical information. It is comparable in its

intention to a two-dimensional indexing method for geographic database applications using
"minimal bounding rectangles" for the storage of geographic information, as opposed to the

conventional one-dimensional indexing methods.

.I
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To calculate absolute time from relative time it is necessary to adopt some refer-nce point The

registrat-m of temporal information for an occasion of which the begintime is known is then

accomplished by asserting two timedist entries in the temporal database, the first containing the

entries corresponding to the rference point and the beginpoint of the occasion, the second

containing the entries for the begin- and endpoint of the occasion. For example, an occasion valid

from timepoint h until timepoint t2 is entered in the temporal database as follows:

timedist(refbegin(Occasion),tj,t)1 •

timedist(begiri(Occasion),end('ccasion),t 1 ,t 2 ).

The first entry has t1 as lower and upper bound, stating that the occasion is known to exist since

timepoint ti. The second timedist entry contains the information related to the'endpoint of the

occasion. The ;tbove representation suffices for the Lalculation of all temporal distances, acquiring

a powerful mechanism for the calculation of temporal distances between occasions with relative

timepoints, while obtaining absolute time from these relative temporal dependencies by the

cal ulation of the shortest possible path from A to B.

There is a visual representation' of the temporal notions (temhporal imagery), the construction of.

time maps. In figure 2.1 a time map is shown. A time map is a graph with vertices referring to

points in time, and distance constraints between the points c)f the graph along the directed edges.

The notation [A,B] in fig. 2.1 corresponds to the minimal and maximal distance between two

points. These may be negative distances, indicating "travelling" in the past. Thus, we can

calculate the distance bounds in going from say ptt to pt 2. In the example there ar three possible

paths leading from pt1 to p02 , two of which traverse pt3 on route.

Thcre is an important distinction between three types of (temporal) distances: a simple distance

function connecting two separate points (as captured by the timedist data structure), the diszance

function corresponding to the distarce of a path, and the distance that represents the greatest

lower bjund (GLB) and least upper bound (LUB) of the distances of these paths, thus the shortest

path. In the case of figure 2.1, the timedists are the four separate distances. The three available

paths from pit to pi 2 have respective distances [5,9], [6,8] and [-1,1l]. On aggregation of the

minimum and maximum bounds of these paths the distance representing the GLB and LUB is

[6,81.

I.
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Figure 2.1: Time map illustrating distance constraints [Dean & McDermott, 1987]

We will further illustrate the temporal motions with an example. We refer to Appendix A for a

listing of the Prolog source code of the predicates used below. We have two occasions, occl and

occ2. We add the following entries to the temporal database:

timedist(ref,begin(occl),100,100).

timedist(begin(occl),end (occl),0,inf .
timedist(ref,begin(occ2),150,150).

timedist (begin (occ2),end(occ2),10,30).

This implies that occl is valid from timepoint 100 nn, and occ2 is valid irom timepoint 150 with a,

duration betwL-n 10 and 30 time u-nits. We have imptemented a temioral distance function with a

shortest path calculation as explained above. When we query the distance from begin(occl) to

end(occ2) the result is the following:

I ?- temporaldistance(begin(otcl) ,end(occ2),Min,Max).

Mnn - 60,

Max - 80.

This illustrates that absolute time is derived from relative temporal instances, via the reference

point "ref". The temporal dependency between occl and occ2 is not explicitly entered into the

temporal database, but calculated via the reference point.
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Querying the lower and upper bounds of an occasion results in the following, stating that occ2

stars at time point 150, and ends between time points 160 and 180.

I ?- temporal bounds (occ2).

[ref,begin(occ2),150,150]

,(ref,end(occ2),160,180]

A temporal query language is necessary to further use the temporal database for determining e.g.

whether a certain point comes before another point, whether an occasion is true throughout a

specific interval, whether two occasions are overlapping. Effectively these requirements above are

met by, predicates that represent notions such as "timepoint less than" and "occasion true

throughout an interval" that can be used in temporal queries. These predicates concern the

temporal relations between occasions and time points, among occasions, and between occasions

and intervals. They are implemented as backward chaining rules. In this way a powerful

mechanism is developed for querying the implicit temporal dependencies among the various

occasions. Beside the timedist instances entries of predicates of the temporal query language such

as "during" and "truethroughout" can be asserted directly to the temporal database as well.

The following is an example of a predicate of the temporal query language, which when called

upon calculates those occasions that satisfy the condition that the period in which Occl is valid

lies completely inside the period that Occ2 is valid. We refer to Appendix A for a complete list.

during(Occl,Occ2}:-

temporal distance (begin (occl),end(Occl) ,Min1,Maxl),

temporal distance (begin (Occ2),end(Occ2),Min2,Max2),

not(Occl - Occ2),

less equal(Min2,Minl),

less equal(Maxl,Max2).

For the example above, this query results in the following answer, meaning that occ2 is found to

occur during occl.

s I ?- during(X,Y).

X- occ2, Y - occl,.
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There is a distinction between two types of occasions. Firstly, an event refers to an occasion with

a duration that can be reasonably pr-.dicted, such as the takc-off of an airplane, or the movement

of a tank company from location X to location Y. In the example above, occ2 is an event.

Secondly, a persistence is an occasion applicable to change over time. Persistences reflect what is

believed to have occurred, and by default the upper bound of a persistence is set to infinite (the

occasion is assumed to be persistent). In the example above occl is a persistence, with its upper

bound set to infinite.

A mechanism referred to as clipping changes persistences into clipped persistences when called

for, indicating that the occasion is no longer valid as from the inserted cliptime. This clipping is

essentially the replacement of an endtime (generally, with an earlier' endtime), and an

accompanying replacement of the upper bound. Often, the clipped occasion will be a persistence

with an upper bound "infinite" between begin- and endpoint. The upper bound is replaced by the

time corresponding to the heginpoint of some later occasion replacing it. To further illustrate the

clipping, we list the temporal bounds of occI from the example above and clip the occasion:

I ?- temporal bounds (ocl}).

[ref,begin(occl), 100, 100]

lrefend(occl),100,inf]

I?- clip node(occl,190).

Due to the relative notions involved, the result of the clipping is that the second timedist entry is

updated. Initially, the lower and higher bound were 0 and inf, these are replaced by the difference

between the cliptime and the begintime; In the case of occl, the timedist entries become as

follows:

timedist(ref,begin(occl),100,100).

timedist (begin(occl) .end(occl), 90,90).

Figure 2.2 below illustrates the clipping mechanism for the example that was given here.

9,

, I
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occl

before I
too 190

fe occlifter I•

not(occl)

Figure 2.2: Time map illustrating the clipping of an occasion

Now, when the temporal bounds are calculated, the result is the following:

I ?- temporalbounds(occl).

[ref,begin (occi), 100,100]

[ref,end(occl),190,190]

The inference mechanism in a temporal database application uses three types of rules: backward

chaining rules, forward chaining rules and clipping rules. The backward chaining rules are used,

as stated above, for the implementation of the temporal queries. The forward chaining rules

contain the domain knowledge and will be used to perform tasks corresponding to Classification

and prediction. Clipping rules respond to the occurrence of apparently contradictory occasions -

for instance. "unit X non-active" and "unit X active" - by clipping the earlier occasion, thus

forcing its endtime to precede the beginning of the later occasion.

The basic temporal taxonomy described provides a quite natural common-sense representation of

time. The history of database entries is implicitly contained in the representation of begin-'and

endpoints in an accompanying temporal relation. A problem is posed by the question of control:

how should the various rules 'be applied. The application of temporal reasoning will be furhr

addressed in the next chapter, in combination with the application of truth maintenance, which is

the subject of the next paragraph.

S... . .. ....t
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2.3 Truth maintenance

2.3.1 Non-monotonic reasoning

The ability to reason about and adapt to a changing environment is an important aspect of

intelligent behaviour. Given a system that performs reasoning (if <condition> then <conclusion>).

adaptation requires the ability to alter conclusions when conditions are contradicted or no longer

met. This implies that monotonic behaviour, i.e. the strict growth of derived facts in a reasoning

system, is not satisfactory. The conclusions in a context of incomplete knowledge are tentative,

meaning that they can be withd:awn when new information makes this necessary. The reasoning

system has to keep record of all tentative conclusions reached and whether they are believed or

disbelieved.

There are quite a few mechanisms that perform non-monotonic reasoning, among them default

logics such as establis'ed by [Reiter, 1980], non-monotonic logics of e.g. [McDermott & Doyle,

1980], methods such as circumscription [McCarthy, 1980]. and, most notably, truth maintenance

systems. Of these, the original TMS [Doyle, 1979] has been extended with assumptions by

[DeKleer, 1986a] to what is generally known as the ATMS, the assumption-based truth

maintenance system. The latter has since gained a widespread recognition and is in our view the

best instrument for non-monotonic reasoning, due to the appealing representation of assumptions

and the implicit ability of representing multiple contexts, entailing the representation of complex

hypot.eses. For an overview cf non-monotonic reasoning we refer to [Ginsberg, 19871, a review

of the literature on truth maintenance is contained in [Stakenborg, 1989], extensions of the ATMS

are given by DeKleer in [DeKleer. 1986b; DeKleer, 1986c].

An assumption-based truth maintenance system (ATMS) is meant to cooperate with a problem

solver. The problem solver gives the ATMS ;'inferences". The ATMS in turn gives the problem

solver "beliefs". The ATMS is a cache for all the inferences, made by the problem solver. It also

allows for non-monotonic reasoning, and it ensures that the database is free of contradictions.

Figure 2.3 illustrates the basic architecture. We note that the terms "reason maintenance" or

"belief revision" are also used; we adhere to truth maintenance.
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Justifications
Problem ATMS
solver I

Valid occasions

Figure 2.3: Basic problem-solving architecture

2.3.2 The Assumption-based Truth Maintenance System
The idea behind an ATMS is the maintenance of a tree-structure of which the nodes are the

statements that a problem solving program uses. These statements may be premises, assumptions,

i.e. statements assumed to be true by default in order to engage in predictive reasoning, or derived

nodes. The results of the problem solver are, passed as "justifications" to the ATMS, which

records these along with the assumptions they rely on. When new information points out that an

assumption is no longer valid, this is passed to the ATMS as well, which then proceeds to track all

justifications that used the assumption as an antecedent, and records these as being no longer

valid. Implicitly, the ATMS contains all possible hypotheses derivable from combinations of all

the valid assumptions.

The ATMS constructs a dependency network consisting of nodes and justifications. The problem

solver associates a datum (a fact, complex proposition, etc., but more importantly an instantiation)

with the node. the ATMS maintains the belief status of the node. An assumption results in an

assumed node, a special type of node that normally remains unjustified (justifies itself), a premise

is a node corresponding to a basic fact. Other node types are based on justifications representing

the derivations made by the problem solver, describing how derived nodes depend on other nodes.

The dependency network is maintained by the construction of environments, being sets of

assumptions. Environments are internal representations created by the ATMS, and nodes receive a
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label as a'pointer to the environments the, node is valid in, i.e. the assumptions the node is

dependent on.

Justifications are expressed in the form: A1 ,...An-> C, with C the consequent and A 1to A ,4he

antecedents, which can be assumptions or non-assumption nodes. We further define a node as

valid in an environment E if and only if it can be derived from the current set of justifications

using only the assumptions in E. An environment is called inconsistent if a contradiction is

derivable from it. In the ATMS this is called a nogood environment.

We will illustrate the working of the ATMS with an example. We have used an implementation of

the ATMS in Prolog listed in (Guoxing, 1989], which was developed at the University of Twente,

the N~etherlands. The essential source code pertaining to the ATMS algorithm is listed in

Appendix B, as well as adaptation- we have made to the code to eliminate errors and to enable the

interaction with the temporal database. The example below does not incorporate the interaction

with the temporal database, this will be addressed in the next chapter. The same example will be

used, however, therefore the treatment here is kept concise.

We have several (abstract) nodes, corresponding with the four occasions occl to occ4. We add the

following to the ATMS, meaning that occl is a premise, occ2 an assumption, occ3 derived from

occl and occ2, and occ4 is in turn derived from occ3:

I- addypremise(occl),

add assumption(occ2),

add justification (occ3, [occl,occ2l),

add justification(occ4, focc3]).

This results in the creation of the premise, assumption, and the two justifications in the ATMS.

The ATMS constructs environments as well, and attributes labels to the nodes. The nodes,

justific:tions and environments can be listed. We will illustrate the propagation of a nogood

assumption through the ATMS with the following simple example. We pass the node occ2 as a

nognod assumption to the ATMS. This results in the passing back of a list of the nodes set to out

by the ATMS, a feature which we have added to the implementation of [Guoxing, 1989].

1i
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The result is the following:

I ?- pass._nogood(occ2,List).

Setting nogood: occ2'

Nodes set to out by ATMS:.

List - (occZ,occ3,occ4].

This shows that the nodes occ3 and occ4 are set to out as well as a result of passing occ2 as a

nogood assumption. The result for the environment consisting of the assumption occ2 is that the

environment is set to be contradictory by the addition of the node "Contradiction".

Each environment induces a context, being sets of nodes (assumptions and non-assumptions)

valid in the environment. Thus a context consists of the assumptions valid in a consistent

environment, and all nodes derivable from those assumptions. A characterizing environment for a

context is the set of assumptions from which every node of the context can be derived. Now, the

main task of the ATMS is to determine whether or not a node is valid in a given context. This is

managed by the maintenance of labels.

Labelling is a crucial mechanism in an ATMS. A label is a set of environments {El,...,Ek)

associated with each node N. A label has to fulfil four requirements: it must be consistent, sound,

complete and minimal. Consistency means that no Ej' is a nogood environment, implying that all

environments containing a nogood environment as a subset must be removed. Soundness means

that node N is valid in each E2., Completeness implies that every environment E in which N is

valid is a superset of some Ei. Finally, minimality is the property that no Ei is a subset of any

other, which implies that all environments that are subsumed by (are supersetr of) other

environments must be removed.

Figure 2.4 is an example of an environment lattice, the result of only five assumptions. An

environment lattice contains all the environments in thý ATMS, with the empty node as root node,

the assumptions in the ATMS as the next layer, and all possib!e combinations of these

assumptions in the intermediate layers, up to thn top node which consists of all assumptions.

Given n assumptions, there are 2 n environments.

SI.
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Figure 2.4: Environment lattice (DeKleer, 1986a]

However, not all of these environments will be used for derivations, and the passing of nogood

assumptions causes all supersets of these environments to be removed from the lattice. This

implies a lesser complexity when using an ATMS than might be expected when considering the

complexity of the environment lattices.

The crossed out environments in the lattice of figure 2.4 correspond with the result of passing the

environment (A,B,E) as a nogood environment The environments that have been crossed out are

all supersets of environment {A,BE). They necessarily become nogood as well because they

completely subsumne the latter environment. As stated above, each environment induces a context,

the nodes that are contained in or can be derived from the assumptions contained in that.

environment. The oval nodes in figure '2.4 represent the context environments of an ATMS node

with label ( (A,Bj,{B,C,D)). This means that a node that is valid in the environment with that
label will also be valid in all environments that are supersets of the two environments contained in

the label. In the same way, the square nodes represent the context environments of a node with

((A.C),(D.EX) as label.

4t
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The basic ATMS-cycle is the creation of a new node that initially gets the empty label fl. A

problem solver datum is associated with the node, and the status is set to out. The next step is to

either create a premise, create an assumption. or to add a justification. A premise node keeps label

}, but the status is iet to in. An assumption A is given label ([A]) and status in, and is in fact a

justifiLation with itself as antecedent ard consequent. As stated before, the antecedents of a

justification must be either premises, assumptions, or other previously justified nodes.

Thus, the ATMS's primary objective is finding a consistent and well-founded'assignment of the

states (in or out) of the nodes which are neither premises nor assumptions. The addition or

removal ofa justification triggers a recomputation of the environment labels of some subset of the

set of nodes.. It is not our intention to go into the further technicalities of the reason maintenance

mechanism here, the algorithm is described in [DeKleer, 1986a].
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3 Prototyping Mefisto

3.1 Introduction

This chapter deals with a demonstration program we have developed that uses a combination of

assumption-based truth maintenance, a temporal reasoning mechanism and a forward-chaining

rule-fir;,ig strategy to fuse information contained in sample reports pertaining to a battlefield

situatioim. "'ze name "Mefisto" is an acronym for "Modular Environment for Fusion and

interpretawion of Sensor data in Tracking Opposing forces". The con.oination of the above

techniques is demonstrated to be a powerful' tool in addressing some major problems in data

fusion: the incorporation of temporal reasoning facilities, a retroactive adaptatior of the

(temporal) database and the maintenance of concurrent hypotheses concerning the current

battlefield situation.

We stress that the intention was to investigate the application of the above techniques to. the

domain of data fusion. This implies that assumptions have been made-beforehand that restrict the

notion of "data fusion" in the contivxt of the application described in this chapter. The domain is

hypothetical in the sense that it mty not be compared to the existing domain that an intelligence

officer has to deal with. The contents of the sample reports must therefore not be considered as

relevant, they were constructed solely as a means of illustrating the techniques involvedWe have

not incorporated geographical aspects. We have furthermore restricted the number of sensors to

two, being human observers reporting groups of sighted vehicles and secondly electronic Warfare

units reporting radio-transmittals perceived. The examples used will therefore be admittedly

simple, but suffice to illustrate the strength of the combination of the above techniques.

We acknowledge the use of an implementation of the basic ATMS [DeKleer, 1986] developed at

the University of Twente, The Netherlands, listed in [Ouoxing, 1989], which we have enhanced

with tempo'wil reaoning facilities. The data structure used as the foundation for the temporal

database stems from [Dean & McDermott, 19871. We have implemented a basic forward chaining

production system as described in [Merritt, 1989]. As stated, the domain is hypothetical, but as

guidelines we have used (VS 2-1351, 1988] for a simole order -' battle, as well a. [VS 30-5,

1989], describing combat intelligence. Structured Analysis (?ourdon) was used for the

7A
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representation of the process structure. Nijssen's Information Analysis M-Ithod (NIAM) was used

for the representation of the data structures. The apllication was developed on a SUN Sparc-2

workstati3n and written in Quintus Prolog.

We will first address the domain involved. Then we will provide an overview of the application,

decribing its structure and specifying the user interface. Paragraph 3.4 will detail the 'echniques

used: the forward chaining algorithm and the rule format, the ATMS and the temporai reasoning
facilities th at have teen constructed, the merger of the latter two, and the data fusior. strategy.

3.2 The battlefield environment

3.2. 1 The area of intelligence responsibility

The battlefield environment in our 'application is, as indicated in the, previous section, kept

relatively simple The area of intelligence responsibility is assumed to be. a rectangular area. We

have divided ths region into six sectors, each having the same dimensions located.some distance
ahead of tlhe FLOT (Front Line Own Troops). In each of these sectors we have a human observer

post at a ;ixed location, the central point of the sector. These observer posts (HI to H6) report

vehicles sighted passing in the vicinity of iheir locations. The reports from the human observers

contain the position (being the location of the observer post), the time of sighting, the vehicle

types and quantities sighted and the direction of movement.

Apart from th,.e human observer posts there are two comint posts at the own side of the FLOT.

"These comint posts (part of an EWU) are assumed to provide detailed information on the front

sectors, using ESM systems for the interception of transmissions and taking bearings to determine

the positions. They are able to provide order of battle information based On the patterns perceived

in the inte:cepted transmissions. This will lead to the inclusion of either approximate vehicle

groups or a reference to a unit type in the comint reports. As a result the information reported by

the comint posts is less reliable han the information reported by the human observers. Beside the
position the comint reports contain the time of interception. the vehicle types and quantities or a

reference to a unit type.

We have limited the spatial aspects in the application to a minimum. We have incorporated

several time-dependent context parameters to describe a simplified meteorological condition. This
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entails a distinction between day and night, between clear or misty circur;itances, and specificaly

for the comint reports the circumstance that the intecephions of transmissions may have been

subject to jamming, possibly causing errors in content and reliability of the comint reports.

3.2.2 The order of battle
The basis for the order of battle is taken from [VS 30-1, 1987), however we have adapted this to
simplify matters, therefore the order of battle used should not be matched with an existing one.

The top level unit is the regiment. The regiments can be either a tank regiment or a mechanized

infantry regiment.

Tkreg
3 Tkbat

3 Tkcmp
3 Tkplt

3 TS0
1 MechinfbatBMP

3 Mechinfcmp_BMP
3 MechinfpltBMP

4 BMP
I AAAsect

4 ZSU
I Minesweepcmp

3 Minesweepplt

10 KMT

Figure 3.1: A tank regiment

The unit types are tank (TM), mechanized infantry (Mechinf.BTR, Mechinf._BMP), anti-tank

(AT), mine sweeping (MS). artillery (ARTY) and anti air artillery (AAA). As vehicle types we

have tank (T80), armoured cars (BMP, BTR), anti-tank (SA), anti air artillery vehicles (ZSU),

mine sweeping vehicles (KMT), trucks canying equipment for target acquisition (POLEDISH)

and heavy artillery vehicles (2S3).

The mechanized infantry units can be "mechinfBMP" or "mechinfBTR", depending on the

vehicle type. The main force of the regiments consists of four battalions. A battalion consists of

several companies and platoons. We assume a pre-combat situation some distance ahead of the

FLOT, implying that companies will generally move in a column formation, with a short distance

between the vehicles. Generally, the companies of the battalions will be spread out across the

-- /ik



TNO rpont

mm
page

28

breath of the sectors, the companies move in columns of platoons, allowing a fast deployment if

necessary.

A tank regiment has three tank battalions and one "mechinfBMP battalion. Also, a mine

sweeping platoon is added to the reg!ment. This is illustrated in figure 3.1. The numbers listed in

the figure are not totals, they should be read as follows: a tank regiment has three tank battalions.

Each tank battalion consists of three tank companies. Each company in turn consists of three

platoons. Finally, a tank platoon consists of three T80's.

MechinfregBMP
3 Mechinfbat BMP

3 Mechinfcmp BMP
3 MechinfpltBMP

4 BMP
I Tkbat

3 Tkcmp
3 Tkplt

3 TSO
1 Ant iTkcmjD

9 SA
I ARTYsect

I Targetacqpit
3 POLED:SH

1 Mechartcmp
9' 2S3

1 Minesweepplt
10 KMT

Figure 3.2: A mechanized infantry BMP regiment

There are two types of mechanized infantry regiment, corresponding with the vehicle types BMP

and BTR. The mechinfBMP regiment consists of three mechinf.BMP battalions and one tank

battalion. Beside these battalions the regiment consists of an anti-tank company, a mine sweeping

platoon and an artillery section with target acquisition 'means and heavy artillery. The

mechinfBTR regiment consists of three mechinfBTR battalions and one tank battalion. It also

has an anti-tank company, an anti air artillery section and a mine sweeping platoon.

I-.!*
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Mechinfreg_BTR
3 Mechinfbat BTR

3 Mechin fcmpBTR
3 Mechinfplt_BTR

4 BTR
1 Tkbat

3 Tkcmp
3 Tkplt

3 T80
1 AntiTkcmp

9 SA
1 AAAsect

4 ZSU
1 Minesweepplt I

10 KMT

Figure 3.3: A mechanized infantry BTR regiment

3.3 System overview

3.3.1 The structure of the process
The overall structure of the application is as follows: we have a domain representing a simple

battlefield as explained in the previous section, with sources sending in reports on sighted vehicle

groups and perceived radio-transmissions. The information in the reports is converted into unit

structures. By default each report is first assumed to refer to a separate unit on the, battlefield. The

further structuring of the units is accomplished by classifying, correlating and aggregating units

by the application of rules containing knowledge of the properties of the domain objects and the

order of battle. The derivations and the underlying assumptions concerning these units and their

* attributes are passed to the ATMS. The temporal information concerning the units is passed to a

temporal database. The rules use the combination 3f information contained in the ATMS and the

temporal database. The top-level process structure consists of the following functions:

I., Process report;

2. Classify unit:

3. Correlate units:

4. Aggregaie units;-

5. Process ATMS-request;

6. Process TDB-request.
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The functions are carried out in response, to events, being requests from the operator of the

application. The processing of a report is the conversion of a report into a unit (the assumption

that each report refers to a separate unit), for which an initial "unit frame" is constructed with

attributes filled in as much- as possible from the reported information. The report is stored as a

premise in the ATMS, a timedist entry for the report is stored in the temporal database (TDB).

The unit that' is created is stored in the ATMS as an assumption. Two timedist entries are stored in

the TDB (see paragraph 2.2.3), one from the reference point to the begintime (the sighting time

reported), and one from the begintime to the endtime, whereby the upper bound of the duration is

initially set to infinity.

The three main phases are the classification, correlation and the aggregation of units. The

-classification is aimed at determining the unit type. A classify request triggers the attempt to

classify a certain vehicle type group as referring to a specific unit type by the application of

classification rules. The result is stored as a justification in the ATMS and accompanying timedist

entnies are stored in the TDB. Among the classification rules are default rules, whicb also derive a

unit type, but the latter is stored as an assumption in the ATMS. The assumed unit type will

possibly be used later to correlate and/or aggregate. MVhen new information indicates that the unit

is not a tank company but a mechanized infantry company, this will cause a recalculation of the

ATMS states corresponding to the validity of derived statements based on the previous

assumption.

The correlation of reports with units is more complicated. Given two observer posts at some

distance from each other, it is possible that the same vehicle groups pass both observer posts: In

the case of iniormation from electronic warfare units this may hold as well because the comint

posts may report the same group morre than, once. The correlation is aimed at eliminating

duplicate counts of the same units, which would indicate a stronger force than would actually be

preent on the battlefield. This ;)hasa thus encompasses the correlation of data from like sensors as

well as from different sensors. Correlation rules aid in determining whether two reports in fact

refer to the same object. When this occurs the unit structrue corresponding to the earlier report is

clipped, passed to the ATMS as a nogood assumption, triggering the recalculation of the

consistency of the database.

Aggregation is the combination of two or more units into a higher-level unit. When an

aggregation takes place, the resulting unit is stored separately, leaving the units used for the
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Aggregation intact because there may be several options for the aggregation of units, and units

might be correlated later with other units. Aggregation rules also perform a classification task
because they will derive values for the unit type of the resulting aggregation.

We stress that the control of the application is to a large extent in the hands of the operator. We

have chosen to allow the phases classification, correlation and aggregation to be initiated by the

operator and not by the application itself. This implies that the application is not highly

"automated". The reason is the focus on techniques for truth maintenance and temporal reasoning;

the aim was not to, process incoming reports in real time. To further support the interaction with

the ATMS and the TDB a direct manipulation of the ATMS-database and the temporal database is
possible as well. The processing of requests to the ATMS and the TDB are contained in the two

remaining functions in the aforementioned list. In paragraph 3.3.1 this will be dealt with in more

detail.

3.3.2 The structure of the data

"The main data stru&ures in the application are "report', "unit-type" and "unit". The ATMS
-further uses "tins node", "assumption", "justification" and '°environment" as data structures. The

temporal database is built with "timedist" as data structure. The data structures will be outlined

below.

The report contains a report number as the unique reference, and the source of the report. In the

case of a human observer post, the location of the sighted vehicles and the direction they were
moving in is reported. The vehicles are reported as "sightedvehicle_typegroup", represented in

the database as tuples of vehicle types and quantities. In the case of a comint -eport, the location

and orbat information are reported. In both cases the time ef sighting is contained in the report.

Reportnr : 1
Sourcetype humint
Source-nr 3
Directionfrom: east
Direction to : west
Sighting time 101
Vehicle group tIO , 9

Figure 3.4: Report structure

!i
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The "unit-type" is the representation of units contained in the standard order of battle. A

"unit-type" is represented as a unit class and unit size, e.g. respectively "tank" and "company",

implying that the unit type is a tank company. This distinction is made because it may for

example be evident what class a unit belongs to, but not what the size of the unit is. The following

example clarifies the representation of a "unit-type":

unit type(mechinf btr,cmp).

unit type(mechinf btr,plt).

unit typegroup (mechinf btr,cmp,rmechinfbtr,plt,3).

orbat vehicle typegroup(mechinf btr,plt,btr,4).

The "unit-type-group" above means that a mechanized BTR infantry company (the notation

above is in lower case letters due to a convention in Prolog) consists of 3 mcchinf platoons, these

in turn consisting of 4 BTR vehicles. The unit type data is used in the rules. In effect, a match is

carried out between the "sightedyvehicle-jype-groups" contained in the reports and the "orbat-

-vehicle-type-groups" of the known order of battle to classify the unit type.

The unit is the central data structure, it contains the information on the units that (are assumed to)

exist on the battlefield.. Apart from information on the source(s) that reported the unit, the (last

known) position and direction of movement, a unit consists of vehicle type groups and has a unit

class and a unit size. The vehicle type groups may be the result of several sighted vehicle type

groups and are therefore distinct from the latter. A rating is attributed to the unit structure, based

on several context parameters concerning the time of day, the weather and jamming, as described

in paragraph 3.2.1.

Unit-nr 1
Source type : humint
Source nr 3
Last_.position [250,250]
Sector 3
Directionfrom : east
Direction to west
Vehiclegroups :t80,9]
Unitclass tk
Unitsize cmp
Rating a

Figure 3.5: Unit structure

i-
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The ATMS uses four main data structures. The following are based on the ATMS-implementation

in Prolog by [Guoxing. 19891 that we have used, which will be addressed in paragraph 3.4.2:

tms node(Index,Occasion, Status,Label,Justifications,Consequents,

Rules,Nodetype).

assumption (Index,OccasionEnvironmentr).

justification (Index,Type,Consequent,Antecedents).

environment (Index,N assumptions,Assumptions,Nodes,Contradictory).

The onsnode data structure contains first of all an index and the occasion it corresponds with.

Furthermore, the status of the node (in or out), a label representing the indices of environments

(sets of assumptions) in which the node can b. proven using all justifications known to the

ATMS. an index of the justification(s) describing how this node is derivable from other nodes, an
index for the justifications using this node as an antecedent, a Rules field reserved for the problem

solver and finally the type of node (assumed node, premise, or derived node).

The assumption data structure 'has the occasion as second argument, and provides a list of the

environments wherein the assumption holds.

The justification data structure lists the tpe of justification (supplied by the problem solver), the

index of the consequent node and the indices of the antecedent nodes.

The data structure environment includes the number of assumptions in this environment, the

(indices of the) assumptions themselves, the nodes in whose label the envirunment appears, and

the field contradictory indicates whether this environment is inconsiztent.

We have used a temporal data structure that we call timedist that originates from [Dean &

McDermott, 1,987] as the data structure for the temporal database. The data structure contains the

names of the begin- and the endpoint and the lower and upper bounds of the duration between the

begin- and endpoint:

timedist(Beginpoint,Endpoint,Low,.qigh).
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The temporal representation implies th.at nothing is deleted from the database. All data stored in

the ATMS and in the internal (Prolog) database receives a temporal entry. In the case that an

occasion is no longer valid, the temporal entry is clipped, but the occasion as well as the clipped

temporal entry are retained.

3.3.3 The structure of the dialogue

In its current form, the application consists of a main program containing the forward-chaining

engine, predicates governing temporal, reasoning, the interaction with the ATMS and the TDB,

and the definition of the interface. Furthermore, there are separate files containing the ATMS, a

compiled report database, a compiled domain database and a compiled rules knowledge base. The

Prolog database is used as the working storage means. Due to the concentration on techniques
involving truth maintenance and temporal reasoning, we have not incorporated -any graphical

facilities whatsoever.

The control of the application is to a large extent in the hands of the operator. The main menu

therefore corresponds with the functions described in paragraph 3.3.1 and h& the following form:

1. Report generator

2. Classify report

3. Correlate units

4. Aggregate units

5. ATMS request

6. TDB request

7. Exit

The report generator can be called; it, fetches and prints reports one by one:

Generate report? [y/ni: y.

Report_nr :5

Sourcetype : humint

Sourcenr : 3

Direction from: east

Direction-to : west

Sighting-time 105

Vehiclegroup : btr , 3
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For each report, a new unit is asserted with as yet no unit class or unit size, but with vehicle ty, -

groups filled in if these were reported. Transparent to the user, corresponding occasions and

temporal entries are passed to the ATMS and the TDB.

Classification, correlation and aggregation are all initiated by the operator. A request results in the

application of rules. The application of the rules is sequential, stepping through the rules in the

order in which they are contained in the knowledge base. It is possible to fire applicable rules one

at a time or all at once. The inference mechanism and the rule format will be addressed in

paragraph 3.4.1. When a rule fires this is communicated to the user, stating the rule that was fired

and the interactions with the ATMS and/or the TDB that resulted from it.

Apart from the above a-direct interaction with the ATMS and the TDB is possible. The ATMS
database can be queried for tnis-nodes, assumptions, justifications and environments. It is

possible to additionally pass instantiations of these structures to the ATMS, providing direct

control over the ATMS. The temporal database can be queried and timedist instantiations may be

asserted. However, the interaction with the ATMS and the TDB will generally be triggered by the

application of the rules. The details of the interaction will be further dealt with in paragraphs

3.4.2. and 3.4.3.

We will indicate the flow of control between the nmain functions. The functions initiated by the

main menu can be called independently, however, they do depend on each other. The report

generator will generate reports one at a time. A unit frame is constructed for the report and filled

in with the report information. The report generator will ask whether more reports are required. In

general, when a number of reports have been generated, the functions classification, correlation

and aggregation are called sequentially. This is illustrated in figure 3.8 below. From each of these

phases the report generator can be called again, after which the above process is repeated.

During the four phases above the ATMS and the TDB are inspected and adapted continuously by

the system, triggered by the rules that are fired. However, this inspection and adaptation may take

place manually as well.
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Process Classify Correlate Aggregate
report report units U'nits.

ATMS ]ATMS

TDBe TD
exit exit exitCtrit

Figure 3.6: Control flow
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3.4 Technology overview

3.4.1 Forward chaining production system
We have used a simple forward chaining production system for the implementation of the nile-

application; The algorithm is taken from [Merritt, 1989]. It is a basic failure-driven loop carrying

out a "match-and-process" cycle, firing all rule-instantiations, one rule at a time.

We have chosen to use a forward-chaining rule-firing strategy for the fusion of information from

the reports. Rule-based reasoning is a widespread technique and it provides a quite natural

representation for sta:,ng e.g. some simple heuristics pertaining to order of battle. The forward-

chaining strategy was also chosen because reports are entered one by one and continuously and

the information that feeds the rules becomes available in bits and pieces. This as opposed to for

instance the domain of diagnosis, where a sei of symptoms is entered at once, and a backward

chaining strategy is used that finds the rule(s) containing the diagnosis that best matclhes the

symptoms. Also, the ATMS cannot store variables ,and thus all ATMS nodes must be

instantiations of. in our case. Prolog clauses. This implies that a backward-chaining rule-firing

strategy, whereby instantiations are only "virtual" in the sense that they are not explicitly stored,

does not suffice.

The rule format that we have used is as follows:

"rule (Rule type,Rulenr,Description)::

[Condition1,

Condition2, etc]

S[Actionl,
Action2, etc).

A simple example of a rule is the following, stating that a unit is classified as being a tank
company when the unit consists of between S and 13 tanks. The "deriveandassune" statement

is a call to the ATMS, triggering the 'passing of a justification for the'unit class and unit size

classification to the ATMS.

(rt
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rule (classify'(Unit_nr), 5, tkcmp)::

[tms (unitvehi'cletype group(Unit_nr,tSO,Qty)),

Qty > 8,

Qty < 13

[temporal distance(ref,end(unit (Unitnr)),Low, High),

derive and assume (unit class(Unitnr,tk),-,Low),

derive andassume(unit 3ize(Unitnr,cmp),_.,Low)
I.

The rule types are divided into classification, correlation and aggregation rules. The above rule is

an example of a classification rule.

The derived unit class and unit size are set to be an assumption in the ATMS after being passed as

a derivation. This implies that if at a later time the unit class or unit size of this unit are derived to

be something other ihan "tk" and "cmp", the passing of the assumption as a "nogood" to the

ATMS will result in tracking the conclusions that have since made, based in part on the

assumption that the unit was a tank company.

The conditions and actions of the rules are contained in lists, enabling efficient processing in

Prolog. We distinguish between three types of "calls" in the conditions and actions of the rules.,

These can'be calls to Prolog, calls to the ATMS and calls to the temporal database. These three

types of calls are the building blocks of the rules. They are carried out by "match" and "process"

clauses, which use predicates corresponding to the calls. The Prolog calls may be calls to

functions in the main program, queries, assertions and ,etractions of clauses in the Prolog

database, as'well as built-in Prolog predicates. The interaction with thz ATMS and the use of the

temporal database will be the subject of the next section.

I
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3.4.2 Truth maintenance and temporal reasoning in Mefisto

3.4.2.1 Keeping track of reason
We have used an implementation of the ATMS that is listed in [Guoxing, 19891. written in

Prolog. De Kleer's original ATMS does not incorporate negations, nor disjunctions, nor does it

allow to explicitly contain default justifications. The implementation of the ATMS of (Guoxing,

19891 concerns the basic ATMS and therefore does not include these either. Instead of a time-

consuming adaptation of Guoxing's implementation, we have chosen to bring negations,

disjunctions and defaults into the interaction with the ATMS triggered by the application of the

rnles, letting the problem solver deal with them. An adaptation of Guoxing's implementation was

necessary, however, to remove several errors mainly concerning the subsumption of environments

and the allocation of contradictory environments as a result of passing nogood assumptions.

Further adaptations concerned the interaction with the main program and the temporal dzzabase.

Details can be found in the appendices.

The consultation and manipulation of the ATMS is triggered by the application of the rules; the

ATMS-calls as explained in the previous paragraph. The ATMS is queried in the conditions of the

rules. For instance, in the case of the following condition, used in the example of the previous

paragraph:

tms(unitvehicletype groupt(Unit_nr,t80,Qty)).

The possible ATMS-calls are the following:

asktms (X, Status).

add premise(X).

addassumption (X).

add justification (Consecruent,AntecedentList).

passnogood(X).

An occasion can be asserted as a premise. A re,7 -q-xil-• c he crrai.: lrýe -' •

assertion of an assumed node in the ATW, qvý., • i n1 s t ar+ ' W

environment. Justifications pass derived nodc -w 4R.'. ATW t Wie; ras~m-

an assumption or set of assumptions as a nogood e m i-.. tt C th•iw nV"rTe- i•

i



TNO report

Page
40

set to "contradictory", triggering a recomputation of the labels. The ATMS checks which nodes

have labels containing environments that are subsumed by this nogood environment. It changes

these environments to "contradictory" as well and adium,, the labels, so that these nogoods are

removed from the respective labels. If as a result the label becomes empty, the status of that node

is set to owt, the node is no longer valid. This process results in an "outlist", i.e. a list of the nodes

that the ATMS has set to out.

3.4.2.2 Keeping up with time

Each occasion has a timedisl rntry representing the duration of the occasion. We repeat the basic

temporal data structure here:

t imedist (begin (Occasion) ,end(Occasion) ,Low, High).

This represents that the duration of Occasion is known to have a lower bound Low and an upper

bound High. This is a relative duration, not related to an absolute reference point.:In txe case that

the begintime c f the occasion is known as well, another timedist entry is asserted into the

temporal database to allow the calculation of absolute time. We have chosen this absolute

reference point (ref) to 'e the timepoint 0. This second timedist entry represents the begintime of

the occasion and will have both lo-. er and upperbound eqtual to the begintime of the occasion.

For a persistence, the endtime in the abe timedist entry is set to infinity, indicating that the

occasion is believed to be valid indefinitely, to be defied only by information stating the contrary.

The interaction in the rules allows to query the temporal database, calling functions that calculate

temporal distances, asserting, updating and clipping timedist entries. The following calls to the

temporal database are possible:

tinmedist (X, Y, Low, High).-

add_timedist(X,Y,Low,High).

update_timedist (X,Y,Lo%.,High).

clipnode (-.. T).

clipnodel2 .•t(List,T)
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The clipping mechanism changes persistences into clipped persistences (clips) 'vhen called for.

This clipping is essentially the replacement of the upper'bound of the occasion to be clipped. Due

to the relative notions involved in the timedist entries the new upper bound will be the difference

between the cliptime and the begintime of the occasion. Let's take the following example:

timedist (ref,begin (unit (1)),120,120).
timedist(begin(unit(l)),end(unit(l)),O,inf).

When the occasion unit(l) is clipped at time 200, the result of the clipping will be that the first

timedist entry is kept intact and that the second timedist entry is updated to the following:

timedist (begin(unit (1)) ,end(unit (1)), 80.80)1.

When querying the temporal distance from the reference point ref to end(unit(l)) tl-e result will

now be 200,

We have furthermore implemented an elaborate collection of temporal queries. The queries erable

to determine whether a certain timepoint comes before another timepoint, whether an occasion is

true throughout a specific interval, whether two occasions are overlapping, etc. We refer to the

appendices for a more completelist.

3.4.3 Inference and temporal truth maintenanc,

Given techniques for assumption-based truth maintenance and temporal reasoning, the question

now arises how to combine them. Both the temporal data structure and the representation of an

occasion in an ATMS contain information concerning the validity of an occasion. The ATMS is

used to keep track of assumptions and conclusions based on these assumptions. The temporal

database must be updated when the ATMS has defied earlier derived conclusions. The ATMS

in/out truth status represents the current status of an occasion in the sense that it happens to be the

result of the latest adaptation to the ATMS, but it is in fact time-independent. The temporal

database represents the complete period during which the occasion is valid. The combination is

comparable to a four-dimensional space-time representation, in the sense that it allows to

represent the state of the battlefield (which is described by the occasions) at each moment in time.



TNO report

Page
42

Moreover, it does not represent just one state, but implicitly contains a multitude of states due to

the representation based on assumptions.

The effectuation of the combination of truth maintenance and a temporal database is triggered by

the application of the rules. Adaptations to the implementation of the ATMS of [Guoxing, 1989]

were made to effect the passing of information to and from the ATMS, necessary to be able to

adapt the timedist entries when an environment is passed as "nogood" to the ATMS. When an
occasion is passed to the ATMS, at leant one timedist entry is asserted to the temporal database, as

outlined in previous paragraphs. When an assumption or set of assumptions is passed as a nogood
environment to the ATMS the timedist entries for the assumption(s) are adapted simultaneously,

clipped by some cliptime. The ATMS returns a list of the nodes invalidated as a result of the

ensuing label recomputation. These nodes can then be clipped accordingly.

To accomplish the above we have implemented a set of predicates that combine the functions

listed in tie previous two paragraphs. These are used in the actions of the rules and are the

following, the relevant source code for the predicates listed below is contained in Appendix A:

asktms (X, Status).

add premise(X,T).

assume (X, T).

derive (X, List,T).

derive and assume(X, List,T).

replacenode (X, Y) .

,setnode IX, Status).

add_timedist(X,Y,Low,High).

updatetimedist (X, Y, Low, High).

clip node (X,T).

clip nodelist (List,T).

pass nogood(X,OutList).

set nogood(X,T).

These perform selections, additions, updates and "deletions", the latter in effect the replacement

of (truth) status in by status out. A derived occasion results in passing a justification to the ATMS

with the nodes, that were used as conditions in the rule, as the antecedents of this justification. It
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is also possible that a derived occasion is set to be an assumption as well, a feature intended to

allow the tracking of how defaults were derived (e.g. when 'assuming unit types) which is not

incorporated in the basic ATMS. A node can be replaced, or set to another truth status. The set

nogood predicate is a combination of "pass nogood", "clip node" and'"clip nodelist". The clipping

of a nogood assumption results in the passing back of a list of the nodes set to out, the "clip

nodelist" predicate carries out the clipping of this list.

We will illustrate the above for the example that was already contained in chapter 2 for the four

occasions occl to occ4. We instantiate occl as a premise fiom timepoint 0 on, and occ2 as an

assumption from timepoint 100 on:

I 2- add premise(occl,O).

I '- add assumption (occ2, 100)

The ATMS now contains two nodes, a justification for the assumption occ2, as well as an

environment consisting of the assumption. Now, we will apply two rules, resulting in the

derivation of occasions occ3 and occ4. The occasion occ3 is for example the result of firing the

first rule below. The rule states that occ3 is derived if occl and occ2 are valid in the ATMS. The

derive statement adds occ3 as a derived node to the ATMS, and simultaneously adds occ3 to the

temporal database, with a begintime corresponding to the later of the begintimes of occ land OCC2

(application of the rule will find this to be the timepoint 100).

rule (example, 1, occ3)::

ItMs (occI),

tins (occ2)]

[later (occl,occ2,Time),

derive(occ3,_,Time)]

The second rule results in the derivation of occ4. It is instantiated in the ATMS as a derived node,

dc;*ved from the validity of the earlier derived occ3. As the begintime for occ4 the begintime of

.occ3 is taken, the latter being calculated by the temporal distance clause contained in the rde,

S.. ....... .. .... .. ... .. ....... .. • •. • ..: ." ,:: : : .... I
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rtvle(example,2,occ4)]::

[tms (occ3)]

(temporal _distance (ref,end(occ3) ,Time,_),

derive (oc4 ,_, Time)]

The following is the result of firing the rules:

"> fire (example,_).

Adding justification for: occ3

Starting at time: 100

Rule, fired: example, 1, occ3

Fire rule? y.

Adding justification for: occ4

Starting at time: 100

Rule fired: example, 2, occ4

The ATMS can be consulted for lists of the nodes, justifications and environments contained in

the ATMS. When we inspect the justifications the ATMS has constructed due to the firing of the
two rules above, the result is the following:

Justification: 2 -> Type: example

Consequent : 3

Antecedents : [1,2]

Justification: 3 -> Type: example

Consequent : 4

Antecedents : [3]

The first justification listed means that, a justification has been added with "Type" indicating the

rule type that caused the justification. The consequent of the justification is node 3, the
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antecedents are nodes 1 and 2. For this example, the numbers of the nodes correspond with the

numbers of the occasions, as the list below will show. This also illustrates the "bookkeeping"

nature of the ATMS; the derivations are registered without any reference to the meaning of the
nodes involved. The second justification above corresponds to the derivation resulting from the

second rule.

Now, when we inspect the ATMS for the nodes with truth status in, the following list is

generated:

I?- tellnode(_,in).

Node 1: occl, premise node

Node 2: occ2, assumed node

Node 3: occ3, derived node

Node 4: occ4, derived node

The internal representation of these nodes in the ATMS further contains the label, being the set of
Senviionments that the node is valid in. For example, we will list the representation for node 3

here:

Node : -> Datum: occ3

Status: in

Label : [1]

Just : [2]

Cons : [3]

Type : [derived]

This implies that occ3 is contained in the ATMS with envirmnment I as label. In our example,
there is only one enyironment, containing the assumption occ2. The field "Just" contains

justification 2 as the justification that instantiated occ3, and the field "Cons" states that

justification 3 contains node 3 as an antecedenL

The clipping of nodes is also instigated by the application of rules. We will use the following
clipping rule which does not contain any conditions, as these are not relevant here. The condition
would be some state that would lead to the clipping of the assumption occ2 at timepoint 190.

I
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The rule is as follows:

rule (clipping, 1,occ2)::
[]

[set-nogood(occ2, 190)].

I ?- fire(clipping,l).

Setting nogood: occ2

Nodes set to out by ATMS are:

occ2, clipped at time 190

occ3, clipped at time 190

occ4, clipped at time 190

Rule fired: clipping, 1, occ2

The nodes corresponding with occ2, oc3 and occ4 are set to out in the ATMS, environment I

above is set to "contradictory", and a justification is added for the nogood assumption added to the

ATMS. Whcn we query the absolute temporal bounds for the occasions the result is the following:

?- time(_).

(occl, 0, inf]

[occ2, 100,190]

[occ3, 100,190]

[occ4,100,190]

When we ask which nodes have truth status in, the ATMS responds as follows:

I tell node(_,in).

Node 1: occl, premise node

An issue is what to pass to the ATMS. If all data that is usually stored in databases is now stored

in an ATMS, not considering their meaning, the overhead might not be worthwhile. Moreover. the

/
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nature of an ATMS is that it' performs bookkeeping, it keeps track of how the nodes were derived

and thus why something is valid or not. The problem solver keeps track of what it means and

when it is valid. The representation of semantical content in an ATMS is therefore a waste of

resources. For this reason the timedist entries are kept outside the ATMS. Secondly, the timedist

entries implicitly represent the validity of occasions and storing them in the ATMS database

would entail redundancy, leading to integrity problems. The ATMS needs only explicitly contain

the occasions as nodes. In this way, the ATMS keeps track of the occasions, but the history of the

occasion is not represented in the ATMS.

3.4.4 Data fusion in Mefisto

In paragraph 3.3 the main functions, data structures and flow of control in Mefisto were outlined.

Here we will indicate step by step what actions can be taken in the application to perform the

fusion of reported information.

The strategy for performing data fusion is governed by the four main phases that we will repeat

here:

I. Generation of reports;

2. Classify unit types from report information-

3. Correlate (seemingly) identical units;

4. Aggregate units into higher level unit structures.

The first phase is the generation of reports. When the report generator is called to generate a

report 'the first action taken is the construction of a unit structure as described in paragraph 3.3.2.

This unit structure is filled in as much as possible and a reference to the report is made to enable

tracing the reported information. We stress that this is an intermediate structure, resulting from the

underlying assumption that each report refe:s to a separate unit on the battlefield. These unit

structures may be altered or eliminated in the later correlation phase.
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The unit structure contains the following separate elements:

unit (Unit nr).

origin(UnitnrSource type,Source nr,Report_nr).

last known movement (Unit nr, Position, Sector,Direction).

unit vehicle typegroup (Unit nr,Vehicletype,Quantity).

unit class (Unit nr,tlnit class).

unit' size(Unit nr,Unitsize).

rating(Unit_nc,Rating).

The "unitvehicle-type..gmup" may be repeated if the unit consists of more than one vehicle type

group. An occasion for the report is passed to the ATMS as a premise, a timedist entry for the

report (sighting time) is asserted to the temporal database. An occasion for unit(Unit_nr) is passed

to the ATMS as an assumption. The unit class and unit size (together: the unit type) will not be

filled in yet. The unit vehicle type group(s) is (am) adopted from the report. The unit vehicle type

groups are passed to the ATMS as assumptions as well. The reason is that the reported sightings

are not at first hand assumed to be completelh reliable. The occasions are passed to the temporal

database as persistences. This implies that two timedist entries are asserted to the emporal

database. The first registers the begintime of the occasion, the second registers the duration of the

occasion with the upper bound set to infinity, as explained in paragraph 3.4.2.

The second phase is the classification of unit types. The unit structures resulting from the reports

must now be attributed with a unit class and a unit size. This is accomplished by the application of

classification rules. These classification rules contain knowledge on the order of battle, starting at

the vehicle level. For instance, a report from a human observer of a column of'ten -tanks will be

classified as referring to a tank company. Classification will often take place on the basis that a

specific vehicle type or group of vehicle types is characteristic for a certain unit type. Also. the

absence of a certain vehicle type may indicate values for unit class and possibly size. The

occasions for the unit class and size are passed as "derived assumptions" to the ATMS, allowing

that they may be set to nogood at a later time. The timedist entries for unit class and size will be

adopted from the timedist entries of the unit structures.

The third phase is correlation. The aim is to distinguish references to the same battlefield unit by

"various reports and to unite the reported information into one unit structure. Here, the



TNO riport

Page
49

intermediate unit structures resulting from the report generation are inspected and duplicate

references to the same battlefield objects are eiiminated, if possible. Correlation therefore requires

criteria to eliminate duplicate counts. The criteria are applied by correlation rules.

Importaht is that criteria are used to perform the correlation of like-sensor data as well as for the

correlation of data from different sensor types. In our application, this means both data reported

by human observers (humint) and data from electronic warfare units (comint). The strategy we

have chosen for correlation is that we correlate like-sensor data first, data from different sensor-

types after that. Secondly, we restrict the correlation to be applied pairwise. We will illustrate this

for the case that four reports refer to the same battlefield unit. Let's assumne that the unit structures

resulting from these reports are called uI to u4. The first three are humint reports, the last cne is a

comint report. Application of the correlation rules will result in a sequence of three correlations:

u1 with u2 (result u12 ), u12 with u3 (result u 123). and finally u123 with u4 , resulting in u,234. The

strategy of pairwise correlation restricts the complexity in the correlation rules. More importantly,

it will also restrict the computational complexity as the number of occasions grows. We stress

here again that we use the term correlation for attributing reported information to battlefield

objects already sighted, not as the correlation of low level sensor tracks.

The correlation of two unit structures will result in the clipping of the earlier unit structure. hbe

later unit structure (the result of a later report) is kept. Attributes of the later unit structure may be

filled in, for example when correlating a humint sighting with an earlier comint report the

frequency will be added to the unit structure that resulted from the humint sighting. Also, the

vehicle type groups may be adapted to incorporate the information from both reports. Generally,

correlation will imply an accumulation of information concerning battlefield objects. In this way,

the units "move ahead" on the battlefield, so to speak. The earlier unit structure is passed as a

nogood assumption to the ATMS. This may lead to the situation that'conclusions based on the

existence of this earlier unit are set to out by the ATMS. The unit is clipped in the temporal

* database.

The last phase is the aggregation of units. The units remaining after the correlation phase am input
Sto the aggregation phase. The aggregation is aimed at grouping units into higher level units.

Platoons are combiiid into companies, companies will in turn be aggregated into battalions,

battalions into regiments. Aggregated units are represented separately in the ATMS. The reason!. we keep them apart is that units may be part of more than one aggregation, therefore the single



TNO repolt

Page
50

units remain in the database and ar not clipped. The aggregation is a kind of overlay on the units

on the battlefield. Aggregations are hypothesized by the application of aggregation rules, and

justified in the ATMS with the units (and their specific attributes) grouped together as the

underlying assumptions.

Aggregations represent the situation hypotheses. When A new report entails an addition of a unit,

this may result in another aggregation. This aggregation may contradict an earlier one, giving rise

to a second hypothesis of the perceived situation. Another case is when a newly generated report

results in the 'correlation with some unit structure used in an aggregation. The result may be a

change in the classified unit type, and it may well be that what was thought to be the unit type is

now passed as a nogood assumption to the ATMS. This may in turn lead to the removal of an

aggregation and thus the elimination of a situation hypothesis.

0SII
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4 Conclusions and recommendations

The application described in this chapter is in an experimental stage. It does however demonstrate

the usefulness of the combination of a forward chaining rule firing mechanism, an assumption-

based truth maintenance system and a temporal database to support a strategy for data fusion. The

facilities for predictive reasoning, and a retroactive adaptation of the database created with this

combination allow to maintain multiple hypotheses concerning a battlefield environment with the

maintenance of assumptions as the key point. The temporal database furthermore supports a "non-

deletion poli cy", all, wing data to be kept at relative low cost because one timedist entry for each

occasion suffits. to maintain its history.

An inpert.7.t 'spect of using an ATMS is computational efficiency. Especially the mechanism for

updating ,-;.,L i.,. making sure that the list of environments connected to some fact is indeed

without con,rý-.aci ins) and the process of handling' nogoods can become very tricky from an

implerr.:-. ipticrai stpnar4,int [Morgue & Chehire, 19911. Again we stress the fact that we used an

implemcn - icn ;o the ATMS by (Guoxing. 1989], we. refer to Appendix C. However this did

have a .vt ack, because the implementation needed code adaptations in order to perform

adequatel: Most notably, the subsumption of a rogood environment by existing environments in

the ATM.- was iot calculated properly, entailing that the effect of passing a nogood did not

propagati "far erough" causing occasions to remain valid when they were not supposed to. Apart

from re.4,•.. work, the adaptation to allow for the interaction with the main program and the

temporal database was time-consuming as well.

The application and the techniques used could be extended in several ways, we also refer to

[Keene & Perre, 1990]. As stated earlier, geographical complexity was not incorporated. Nor have

we used any probabilistic techniques to represent uncertainty. This could be done by using for

instance the Dempster-Shafer theory of evidence as is described in [Brogi et al., 1984].

Incorporation of fuzzy logic techniques could be even more promising [Sombd, 19901. The

forward chaining engine could be enhanced with certainty factors as well, which would be a

relatively simple extension. The rule-firing strategy could be extended, for instance by using the
RETE match algorithm to perform conflict resolution among applicable rules [Menitt, 1989].
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Acronyms and abbreviations

ASIC All Sources Information Center

ATMS Assumption-based Truth Maintenance System

COMINT Communications Intelligence

DBMS Database Management Svstem

DFD Data Fusion Demonstrator

DFD Data Flow Diagram

DTG Date Time Group

EWU Electronic Warfare Unit

ELINT Electronic Intelligence

FEBA Forward Edge of the Battle Area

FLOT Front Line Own Troops

GLB Greatest Lower Bound

HUMINT Human Intelligence

ISD Information Structure Diagram

LUB Least Upper Bound

MEFISTO Modular Environment for Fusion and Interpretation of Sensor data in Tracking

Opposing forces

NIAM Nijssens Information Analysis Method

ORBAT Order of Battle

POSTGRES Post Ingres

PROLOG Programming inLogic

RDBMS Relational Database Management System

ARMS Reason Maintenance System

RPV Remotely Piloted Vehicle

TDB Temporal Database

TMM Time Map Manager

TMS Truth Maintenance System

Z4-
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Appendix A: The temporal database system

The structure of the code in this appendix is as follows:

I Basic queries A.2

2 Temporal distance calculation A.5

3 Temporal queries A.7

3.1 Relations between timepoints A.7

3.2 Relations between timepoints and occasions A.8

3.3 Relations between necasions A.8

3.4 Relations between occasions and intervals A. 10

-
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Tequela: Temporal query language

This appendix contains the Prolog source code for the temporal database system.

The clauses governing the consultation and manipulation of the temporal dat-abase are listed.

These can be divided into three sections. The first contains predicates for the explicit

manipulation of the temporal database, being the direct addition, updating and clipping of timedist

entries. The second is the code for the function performing the calculation of the shortest path

temporal distances. Finally, a collection of temporal queries is listed that allow to query the

relations among timepoints, among occasions, and between occasions and timepoints.

Basic queries

timedist{ref,refO,O).
timedist (ref, inf, inf, inf).
tinmedist(inf,inf,O,inf).

add tiMedist(X,TimeI:-'
add-timedist (begin (X),end(X) ,Time).

add timedist (X, Y,Time):-
X - begin(A),

Y r end(A),
assert (timedist (ref,X,Time,Time) ),
assert (timedist (X, Y, 0, inf) ) .

add tirnedist(XY,Low,High):-
assert (timedist (X, Y, Low, High)).

updatetimedist(X,YLow,High):-
retract(timedist(X,Y,, _)),
assert (timedist (XY,LowHigh)).

clipjnode(XClipTime):- % in case of a known begintime
timedist (ref,begin (X) ,Begin, Begin),
retract (timedist (begin (X),end(X) , Low, High) ),
Timediff is ClipTime - Begin,
rmyabs (Timediff,Duration),
assert (timedist (begin(X) ,end(X) ,Duration,Duration)),
nI,
write('Node '),
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write(XM
write(' clipped at time 1),
write (ClipTime),
ni. /* Begin + Duration -ClipTime *

clip_nodelist((], _):-

clip nodelistC([HITI ,ClipTime):
c-'ip~node(H,ClipTime),

clip nodelist(T,Cliprime).

rnyabs (A, A)-

A > 0.
myabs (A, B)-

B is -A.

temporal_boundaries(ReportList,Min,Max):
timnelist(ReportList,TimeList),
sort (TimeList, SortedTimeList),
nthl (l,SortedTimeLisrd.Iin),
last (Max,SortedrimeList).

tempora'l bounds(X,L1,H1,L2,Hi2):
caic tem~p_distance(ref,begin(x) ,L1,H1),
caic temp_.distance(ref,end(X),L2,H2),

caic-temo distance(A,B,K,L):-
findall ((A, B, K,L] ,temporal distance (A, B, K, L),List),
write-lis~t(List),,

t ime (X)
findalC CX, Low, High] ,absolutime CX, LowHi~gh),List),
write-list (List),

absolutime (X, Low, fliqh)':
temporal_distance (ref, begin (X) ,Low, _),
temporal distance~ref,end(X), _,High).
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tizneliat(C]I~,()):- ie~st

asktma(report(H,,, t_, _,'_Timeh),_)
tiMeli t (T,TimeList),

tell timedist (X,Y):
timed13t CX, Y,Low, High),
ni,
write tirnedist (X,Y,Low,High),
fail.

tell-timedist(-,-:
ni,

write timedist (X,Y,Low,Hiah)
ni,
write CX),
ni,
write CY),
nl,
write('Low )

write (Low),
nl,
write('High: )
write (High),
'nI,
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2 Temporal distance calculation

temporal distance (B, E,Minimum,Ma~inr.um):-
aggregate((rnax(Min),min(Max) ],distance(B,E,Mjn,Max), (Minl,MaxlJ),

Mini > Maxi

(ni,

write('Temrporal error.'),
n1

true

limitnurn(Minl Minimnum),
limitnum (Maxl, Maximum).

distance (Tb, Te,Min,Max)-
distance(Tb,Te. tTb],0,0,Minrxp,MaxExp),
call(Min is MinExp),
call(Max is MaxExp).

distance (Te, Te, Path,Min,Max,Min,Max).
distance(T1,Te,Path,Minl,Maxl,Min,Max)-

timedist (T1,T2,MinI2,Maxl2),

not (rember(T2,Path) ),
add dist(Minl,Minl2,Min2),
add dist(Max1,Max12,Max2),
di'stance(T2,Te, ('2lPath],Min2,Max2,Min,Max).

distance(Tl,Te,Path,Minl,Maxl,Min,Max):
timedist (T2,T1,Min2l,Max2l),

not (member(T2,Path)),
subtr dist (MinI,Max21,Min2),

* subtr dist(Maxj,Min2l,Max2),
distance(T2,Te, [T2IPath],Min2,Max2,Min,Max).

add dist(ref,ref.0).
add dist (ref. inf, 1000000).
add~dist (inf, ref. 1000000).
add~dist(inf,inf,2000000).
add-dist (ref,A,A).
add -dist (A, ref, A).
add~diat (in f,A, R)

integer (A),
R is 1000000 + A.

add dist (A. inf,R):
integer (A).
R is A + 1000000,
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add diist (A, B,R)-
* integer(A),

integer(B),
R 13 A + B.

f subtr dist (ref. ref,0).
* ubtr-dist(ref,,inf,-10000C0,.
aubtr dist (inf, ref. 1000000).
3ubtr dist Cinf, inf, 500000).
subtir dist(ref,A,-A).
3ubtrdist (A, ref,A).
3ubtr-dist(inf,A,R.)7

integer (A),
R i3 1000000 - A.

3ubtr-dist (A, inf,R):
integer (A),
R is A - 1000000.

3ubt rdi!§t (A, B, R)
integer (A),-
intege=(B),
R i3 A-

limitnum(Num,inf):- % posinf
Hum >- 999000,

limitnum(Num,-inf):- % neginf
Hum -< -999000,

limitnum (Hum, Hum).

3
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3 Temporal queries

3.1 Relations between timepoints

equal(T,T).

less CT, inf):
not(T - inf).

less(ref,T)-

not(T - ref).
less (Tl,T2):

integer (Ti),
integer(T2),

Ti < T2.

less_equal(_,inf).

less equal(ref, _.
less__aqual(Ti,T2):-

integer (Ti),
integer(T2),
TI -< T2.

tixne-equa-ý Tl,T2):
tempo,-al_distance (Tl,T2,O,O).

time-iess( ,Ti,T2)
temporal-distance(Tl,T2,Low, _High),
less (0, Low)

time less (Tl,T2):
temporal_distance (TiT2oLow, High),
'iess(Low,O),
less(O,High).

time less -equai.(Ti,T2):
temporal_distance(Tl,T2,Low, _High),
less equal (0,Low).

time less equal (Tl,.T2):
temporal-distance (Ti,T2,Low, High),
less equal (Low, 0),
less equal (0,High).

time-in_inte-val(T,Ti,T2)-

time -less -equal(Ti,T),

time-less equal (T,T2).
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3.2 Relations between timepoints and occasions

time during occasion (Time,Occasion):
absolutime (Occasion, Low, High),

lass equal (Low, Time),
time les a equal (Time, High).

time_before-occasion(Tirne,Occasion):
ab301UtiMe(O~ccsion,Low, _),
less (Time, Low).

time-after Ioccasion (Time, Occasion):
ab301utime(Occasion,_,High),
le~ss(High, Time).

time_is begin_of occasion(Time,Occasion)-
absolutime (Occasion) ,Low, _),

equal (Time,Low).

time is end of occasion(Time,Occasion):
ab3o1Utime(Occasion),_,High),
equal (Time, High).

3.3 Relations between occasions

earlier(Occasionl,Occasion2,Occasionl,Beginl,aegin2):
starts-earlier(Occasionl,Occasion2,Beginl,Begin2).

earlier(Occasiorxl,Occasicn2,Occasion2,Beginl,Begin2):
starts-earlier (Occasion2,occasionl,Begin2,Beginl).

later(Occasionl,occasion2,Time):
starts -earlier(Occasionl,Occasion2,_ ,Tine).

later (Occasionl,occasion2,Time):
starts-earlier(Occas~ion2,occasionl,_,Time).

later (Occasionl,occasion2,occasion2,Beginl,Begin2):
starts-earlier(Occasionl,Occasion2,Beginl,Begin2).

later(occasionl,occasion2,occasionl,aeginl,Begin2):
starts-earlier(Occasion2,occasionl,Begin2,Beginl).

discriminate(Occasionl,occasion2,occasionl,bccasion2,Beginl,Begin2)-
starts-earlier(Occasionl,Occasion2,Beginl,Begin,2) .
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discriminate (Occasionl,occasion2,occasion2,o~ccsionl,Begifl,Begif2):

3tarts-earlier (Occasion2,occasionl, Begin2,Beginl).

starts earlier(Occasionl,Occasion2, Lowl, Low2):
absolutime (Occasioni, Lowi,_),
ýabsolutime (Occasion2, Low2, _),
not (Occasioni - Occasion2).
less(Lowl,Low2).

before (Occasij)nl,Occasion2):-
absoltitime(Occasionl,_,Highl),
absolutime(Occasion2, Low2,)
not (OCcasionl - Occasion2),
less (Highl, Low2).

after (Occasionl,Occsion2):
absolutime(Occasionl,Lowl,_,
absolutime (Occaaion2,_,Highý2),
not (Occasioni - occasion2),
less(Migh2,Lowl).

during.(Occasionl,Occasion2):

absolutime(Occasionl,Lowl,Highl),
absolutime (Occasion2, Low2, High2),

not (Occasioni - occasion2),

less equal(Low2,Lowl),
less equal (HighI.High2).

begins during (Occasioni, Occasion2):-
absolutime (Occasioni, Lowi,_)
absolutime (Occasion2, Low2, High2),

not (Occasioni - Occasion2),
less_ equal (Low2, Lowi),
less (Lowl,High2).

ends during (Occasioni *Occasion2) -

absolutime(Occasionl,_,Highl),
absolutime (Occasion2, Low2, High2),

not (Occasioni Occasion.2),
less (Low2,Highl),
less_equal (Highl,Righ2).

overlaps (Occasioni,Occasior'2):
begins during(Occasionl,Occasion2)

ends-during(Occasionl,occa,3ion2).
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coincides (Occasioni, Occasion2):-
absolutime(Occasionl,Lowl,High),
ab3olutime (Occasion2, Low, High),

not(Occasioril - Occasion2).

'disjoint occasions (Occasionl,occasion2):-

.not (overlaps (Occaaionl,occasion2)).

3.4 Relations between occasions and intervals

comes-before(Occasion,BeginTime, _

absolutime (Occasion,_,High),
less equal (High,BeginTime).

comes-after(Occasion, _,EndTime):
absolutime (Occasion, Low,)

* less equal (EndTime,Low).

true throughout (Occasion, BeginTime, EndTime) -

absolutime (Occasion, Low, High),
less equal (Low, BeginTime),
less equal (EndTime, High).

lies-in(Occasion,BeginTime,EndTime):

absolutime (Occasion, Low, High),
less -equal (BeginTime, Low),

less equal (High, EndTime).

pa~st overlaps (Occasion, BeginTime, EndTime):-
absolutime (Occasion, Low, High),
not(Low - BeginTime, High -EndTime),
less equal (Low, BeginTime),
less equal (High, EndTime,)

future overlaps (Occasion, BeginTime,EndTime):
absoluti-ne (Occasion, Low, High),
not((Low -ýBeginTime, High =EndTime)),

less equal (BeginTime, Low),

less equal (EndTime,High).
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Appendix 3: Inference and interaction TDB-ATMS

The structure of the code in this appendix is as follows:

I Inference engine B.2

2 Match and pmess clauses B.4

2.1 Match and meet B.4

2.2 Process and take B.5

3 Interaction with TDB and ATMS B.9
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TDB-ATMS: Inference and interaction

This appendix contains the Prolog source code for the rule firing mechanism and the predicates

that handle the interaction between the ATMS and the temporal database.

The interaction with the ATMS and the temporal database is triggered by the application of the

rules. Simultaneous calls to the ATMS and the temporal database wRl1 be contained in the rules as

actions. The forward chaining rule application is a "match and process" algorithm that

sequentially steps through the rules.

The code in this appendix is divided into three sections. The rule firing mechanism is listed first.

Secondly, the match and process clauses are listed, showing how - among others - the "assume",

"derive", and "deriveand_assume" calls to the ATMS and the temporal database have been

implemented. This is subdivided into a "match-and-meet" and a "process-and-take" section,

respectively dealing with the conditions and the actions in the rules. The "take(Action)" clauses of

'the rule application use the predicates that deal with the interaction between the problem solver

and the ATMS, the temporal database, as well as the interaction amongst the latter two. These

predicaies that are used in the match and process clauses are contained in the third section.

Inference engine

fire (Type):-
fire_al1iType,_,_,_,_)

fire (Type,Nr):-
fire ali(Type,Nr, , _, _)

fire all (Type,Nr,Description, LHS,RHS):-
rule (Type,Nr,Description) ::LHS=->RHS,
firerule {Type,Nr,Description, LHS,tRHS),
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fire rule (Type,Nr,Description, LHS,RHS):
match(LHS),

process (RHS, LHS, Type),'
writerule(Type,Nr,Description),
fail.

tire_ruleC_, _,_, _, _)

ni,-
write('Fire rule?')
read (Answer),

carry out (AnSwer),

carry out (y)

fail.
carry out(n):

carry out)_):-
ni,
writeC'Not a valid comrmand,'enter (yin):
read(Answer),

carry out (Answer).

writeru~le(TypeNrDescription)-

ni,
write('Rule fired: )

write(Type),

write(' (N),
write(, '),

write (Description),
n , ni,

write list((]):-

write_list ([H T} ): -

write (H),
ni,
write-list (T)



TNO rpr

Appendix B 
Page
8.4

2 Match and process clauses

2.1I Match and meet

match([]):

match ((Condition Rest]) -

meet (Condition),
match (Rest).

meet(tms(neg(Prem))):-. % meet tins condition

tins_node(_,neg(Prem)..in,_,_,_,_,_)
meet (tns (not (Prem))):-

not (node -exists (Preinin),).
meet (tns (out (Premf),):

tins_node(_,.Prein,out, _,_, _, _, _

meet (tns (Prem)):

tins-node(_,Prem,in,_, _, _, _, .

meet(neg(Prem)):- %meet prolog conditibn

neg(Prem).
meet (not (Prem)):-

no(re'

nott (Prem)

Prem.
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2.2 Process and take

process([],-,):

process(CActionlRestl,LHS,Type):

take (Action, LHS,Type),

process (Rest, LHS,Type).

t ake (as ktms(CX, Status), _ _:

asktmn CX, Stat us)

take~replace~node(X,Y), _, _)

tm.i_replace CX,Y).
take(addypremiseCX,Time), _, _:-

alddpremise (X, Time).

take~ssume(X,Time), _, _)

(check-node-ex4.sts CX, _

bui ldtins_'node CX)

assume-node(X),
ni,
write('Adding assumption: ,
write CX),

add-timedist CX, Time),
ni,
write('Starting at time
write (Time),
ni.

take~deriv.e~neg,, ,_,Time),LHS,Type):
X - negCY),
take(derive(Y, _),LHS,Type).

take(derive(neqCX),NogoodNodeList,Time),LHS,Type):
check-node-exists~negCX), _)

build-tins-node CnegCX))

(check assumpt ion (X),
pass nogood CX, NogoodNodeList)

NogoodNodeList =[

make-antecedent_list(LHS,Ante_List),
new _justification CType,ne~g(X) ,Ante -7List),
ni,

write('Adding justification for:',
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write (neg CX)),

add timedist (X, Time),

nl,7
write('Starting at time: )

write (Time) ,nl.

take (derive (X,NoqoodNodeList,Time) ,LHS,Type):

check-node-exists(X, _

build-tins-node(X)

(check assumption(neg(X)),

pass_ nogood(neg(X),NogoodNodeList)

NogoodNodeList -C

make-antecedent-list(LHS,Ante_List),

new _just'ification(Type,X,Ante List),

ni,
write('Addirlg justification for: )

write(X),

add timedist(X,Timne),
ni,-
write('Starting at time: 1
write (Time),
ni.

take,(deriveaStid-assumre (neg(X) ,,Time) ,LHS,Type).*
X - neg(Y),

take(derive-and-assume(Y, _,Time),LHS,Type).

take (derie-:eand -assume (neg(X),NogoodNodeList,Tirte),LHS,Type)-
check-node-exists(neg(X),9)

build-tins-node (neg(X))

(check~assumption(X),

pass nogood(X,flogoodNodeList)

NocmoodNodeList

make-ante-cedent list (LHS,AnreList),

newjustifiaion (Type, neq(X) ,AnteList),

assume node(neg()O),
-ni,
write('Adding justification and setting assumption: )

write(neg(X)),

add tiinedist (X, Timre),

write('Starting at time:')
write (Time),
ni.
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take(derive-and_assume(XdNogoodNodeList,Time),LHS,Type):
check-node_exists CX, _

build-tins-node CX

(check-assumption(negCX)),
pass nogood(neg(X) ,NogoodNodeList)

NogoodNodeList =(

make-antecedeint-li~st(LHS,AnteList),

new justifitation (Type,X,AnteList),
a asume node CX),

ni,
write('Adding justification and setting assumption: ,
write CX),
add-timedist (X, Time),
nl,
write('Starting at time: '),
write (Timne),
nl.

take~set_pode(X,outC, _, _)

check-node-exists CX, out).
take~set_node(X,outC, _, _:

check-node-existsCX,inC,
set nodeCX,cutC.

take~set node(X,out), _

build-tins-node(XC.
take~pass~nogoodCX,List),_,C:

pass_nogood(X, List).
take~set~nogoodCX,Time) ,_, _C:

set nogood CX, Timle).

take~tiinedistCX,Y,Low,High), , C):-
timedist CX, Y,Low, High)'.

takeftemporal distance(X,Y,Min,Max), _, _ :-
temporal distance CX, Y,Min,Max).

take(add-timedistCX,Y,LowHigh.,,_, _C:-
add-timnedist(X,Y,Low,HighC.

take (assert CX) , _, _C :
assert (XC.

take~retractCXC, _, _C:-
retract CX).

take~call(X),_, _C:-
call (XC.

take((X;YC,_, _C:-
take CX, _, _

takeCY,_, _C.
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take((X- )__

take( (X $ Y,_
X is Y.

take (write (Xl,_,):-
write(X).

take(write-list(X), _,_):
write listi.

take(nl, _, _)

ni.
take(reai(X), _, _)

read (X).
take(pr6mPt(x,y).,_

ni,
writemx,
read CY).

take(:x,_,_):- % if all else fails: a Prolog call
call (X)

fail.

make antecedent list ((HIT], [XiList])-'
H - tms(X),
make antecedent list CT, List).

zmake interedent~list((HTJ,List):
\+ H tms(_),
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3 Interaction with TDB and ATMS

aaktms (X, Status):-
tins_node(_,X,Status, _,_, _, _, _

fetchtmms(X)

asktins(X, in).
fetchtms(_ ):

check-node-existsm(,status)-

tins_node)_ ,X,Status,_, _, _, _,

tell-node(X, Status):-
tins node) ,X,Statusl, _, _, _, _,_

ni,
write (X
fail.

tell1_node(_,- _
ni,

check-assucipt ion (X):
tins_node)_ ,X,in,_,_,,_,(AssumptionlJ).

tell-assumption (A):-
assumption(_,A, _),
ni,
wr4-te (A),
fail.

tell-assumption)_,):-

ni,

tins replace (X,Y):
retract(tms-node (N,X, S.L,J',C,R,P)),
assert (tins_'node (N, Y, S, L, J, C, R, P)

set_node(X,out):-
retract (tns_.node(_,X, _, _,,--)

assert (tins node (,X,out . . . ., .
set-node(X, in):--

retract (tins_node(_,X,_, _, _,_, _, _)
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add~premise(X,T):
build_tins_node CX),
set~premidse-hode CX),
add timedist(X,T).

add assumption(X,T).
build tins node(X),

assume node (X),
add-tiinedist(X,T).

add justification(X,A,T):
build tins node (X),

new justification(just,X,A),
add tiznedist(X,T).

pa~ssnogood (X, NogoodNodeList):
set -nogood nodes ([Xl,NogoodNodeList),
ni,,
write('Setting nogood: 1),
write(X),
nl, ni,
write('Nodes set to out by ATMS are: '),

ni,
write list (NogoodNodeList),
nl,

pass nogood list(], _, _C.

pass nogood -listC([XIRest], Time, TotalList):-
pass nogood CX, NogoodList),
append(NogoodList,List,TotalList),,
pass nogood-list (Rest,Tiine, List).

set nogood(X,T):
pass nogood(X, List),
clip node CX, T),

clip__nodelist (Li~t,T).
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Appendix C:

The Assumption-based Truth Maintenance System

The structure of the code in this appendix,is as follows:

I Build nodes, assumptions, environments C.3

2 Build justification C.5

3 Update node C.6

4 Update label C.7

4.1 Compute justification environment C.8

4.1.1 Make environment from assumption C.8

4.1.2 Qenerate environment cross product C.9

4.2 Remove subsumed environments C. 12

4.2.1 Environment subsumed C. 16

4.2.2 Check contradictory environments C.17

5 Update nogood C. 1.9
5.1 Process nogood tables C.20

5.2 Process environment tables C.21



TNO repo

Appendix C Page
C.2

ATMS Assumption-based Truth Maintenance System

The implementation of the ATMS is based on the implementation in Proiog, listed in [Guoxing.

1989]. We have adapted the code to acquire an interface with our application, to facilitate

interaction with the temporal database and to remove some 'errors from the original code.

However, we stress that the basic algorithms governing the ATMS are unaltered and attributed to

[Guoxing, 1989). The size of the ATMS implementation is over 26 KB, we will not list the

complete code here. Below, we list selections from the ATMS source' code, indicating the

adaptations that we have made that do not only concern the interface.

The ATMS implementation has four main functions that govern the construction and maintenance

of the four main data structures of the ATMS, discussed in paragraph 3.3.2. The functions are the

following:

buildnode.

build_assumption.

buildenvironment.

build justification.

The three functions corresponding to the building of nodes, assumptions and justifications are

initiated from outside the ATMS, as clarified in this report. The "buildenvironment" function is

initiated by the ATMS itself, by the "build-justification" function, which forms; the heart of the

ATMS. It is this latter function that initiates the truth maintenance. When a new justification is

passed to the ATMS, three main functions 2re triggered to recalculate the consistency of the

database. These functions are the updating of nodes, the updating of labels and the updating of

nogoods.

The updating of nogoods uses environment tables and nogood tables as main data structures. The

environment tables contain the environments in the ATMS, they are ordered 'by the number of

assumptions the. environments consists of. Thus, there is an environment table containing the

environments with one assumption, with two assumptions, etcetera. Nogood tables are used to

keep track of the inconsistent environments in the ATMS, and thus the inconsistent assumptions.
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The main adaptation .. cessary in the ATMS itself to allow a combination of truth maintenance

and temporal reasoning techniques is to incorporate the returning of a list of the nodes that were

set to out as a result of a recomputation of the labels, see paragraph 3.4.2 and 3.4.3. The

'NogoodNodeList" records the nodes set to out in the course of the label update mechanism. It

was added to the code in several places, because it "snakes" through the program. It is explicitly

constructed by the ATMS in me "do_delete env" function, see page C. 18.

There were several errors in the code that needed repair. The main error was that on passing

nogoods to the ATMS the calculation of the subsumption did not travel "far enough" through the

ATMS. Beside this, all environments were set to "contradictory" due to this incorrect calculation

of the subsumption. The result was that nodes remained valid incorrectly because their labels were

not correctly adjusted. The errors and adaptations made are stated in the code below.

Build nodes, assumptions, environments

%% build tms node

build tmssnode(Datum):-
(tins_node(_,Datumi, _, _, _, ,

(wr.te('Node already existed'),
nl

(nodecount(C),
assertz(tms_node(C,Datum,out,O0[,,([,[],[]))

systeminiti.

buildassumption

buildassumption (Datum) :-
tmis_node(index,Datum,Status,Label,'Ju.tj , onsq,Rules,Plist),
add_element('Assumption',Plist,P1),
retract(tms_node(Index,Datum,Status,L ,ii-.,.Tusti,consq,Rules,Plist)

assumptioncount (C),
assertz(assumption(C,Datum, [])),
assertz(tmsnode(Index,Datum,Status,Label,JustiConsqRules,Pl)).
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%% build-environment

build-environment (Assum):
envi ronment count (C),
lengt~h(Assum, Len),
assertz (environiment (C, Len,Assum, .], C])),
fill assum env (As sumn, C) ,
insert_env-in-table(Len,C).

fill assum -env([],-_)-

fill_assum_env((HIT2,Env):-
retract (assumption (H,Assum,Oenv)),
Ord add element (Oenv,Env,Nenv),
assertz (assumpe ion (1, A3sum, Nenv)),,
fill_assum-env(T,Env).

insert env-in-table(Len,Cnv-.index):-

retract (env table (Len, E5et)),
ord_add-element (Eset,Env-index,El),

assertz(env-table(Len,El)).
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2 Build justification

build-justification (Type,Conseq, Pntes,NogoodNodeList):
% NogoodNodeList added, snakes through rest of the ATHS

justification_Count (C),

push j~tmisnode just (Conseq,C',

push j'tms node -cons (Antes,C),
assertz (justification (C, Type, 'onseq,Antes) ),
update a,.ýsiething (Conseq,CNogq)odNodeList).

push_j_tins node just (Conseq,Juisti ! ex):

retract(tms_node(Conseq,D,S,L,J,Cons,R,Plist)),
ord-add-element (3,Just-index, Njust),
assertz(tms-,node(Conseq,D,S,L,Njuist,Cons,R,Plist)).

push j~tms_node_cons((J, _)

push j~tms_node_co~ns ((HIT],Just-index):-
process_one by one(H,Just_index),
push j~tms node-cons(T,Just index).

,process one by one (Ante, Just-i~ndex) -

retract(tmns node(Ante,D,S,L,J,Cons,R,Plist)),
(P~list--'.'Assumption']

asse'7tz.(tms-fnode(Ante,D,S,L,3,Consi,R,Plist))

(ord add element(Cons,Just i'ndex,Ncons~,
assertz(tms_node(Ante,D,S,L,j,ýIcon.5,R,Plist))

update something (Conseq, Just index, NogoodNodeList):-
tins -node(Conseq,Datum,_,_,,_,_,_
(Datum==contra_node

update nogood(Just ii~dex,NogoodNodeList)

(retract (node queue )X))
ord-add-element(X,Conseq,X1)',
assertz (node queue(X1) ),
update node(Xl)
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3 Update node

update_nodeU]l):-

update nodeU[H]_ ]):-
update label (H).
f~odi -node queue (H),
do-loop test (H),
node queue (Qt),
(Qt--[]

update node (Ot)

icodi-node-queue (Nd)':-
ret ract (node queue (Nq()
del_elenrent (Nd, Nq, Nql),
assertz (ncde queue (Nq1 ).

do loop test (H):
new -env (New_env),
(New_ýenv=-]

(tins-node(H, _Da~urn, _, _, _,Node_conseq,_,),
do -list-conseq(Node conseq)

do-list conseq([]D:-

do-list conseq((HITD):-

justifiýcation (H,_Type,Justi~conseq,_)I
do~justi~conseq(H,Justi~conseq),
do-li'st-conseq(T).

do just i conseq (H, Conseq): -
Conseq==-contra_node

updaternogood(H, _

add node queue (Conseq).

add -node queue (Node) :-
retract (node_oueue(Queue)),
ord -add -e lernent (Node, Quenie, Ql),
assertz (node queue (01)).
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4 Update label

update label (Node):-
tins-node(Node, _Datum, _,Label,Justi, _ _, _

(Label--(]

(retract (env~product (_))
assertz(envyproduct C [))

do~updat:-._.ibcI'usti,Node)

do updat'e_labelM~,_:

do update_label((hT),Nie):-
compute justification-env(H),
env~product (pen'4)
process~penv(?Ponv.NodFj,
do_update_label(T,Node).

%% compute justification environment

compute justif ication_env(Hi)-
justification (H,_Type,_,Antes),
process_antes(Antes),
comm~process~for~process_antes.

process antes C ]):-

process antes(EHIT)):
tmsntode(H,Datuim, _ Label . . _. .Plist),
(Plist==] 'Assumption)

(assumption(Ind,Datum, _C
push input assumption (Id)

push input envs (Label)

process antes (T).

push ~input assumption (H):-
ret ract (input assumption (Iassum))
ord -add -eJ~ement(Iassum,H,I,),
assertz(input~assumption(il) I

.push input_envs(L~abe1~i
retract (inpu_,t envs (Env)
ord-union(Label,Env,.Ei),
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list to ord set (El,E2),

assertz(input~envs (E2)).

coftm~proce~ssf oryprocess_antes: -
*input assumption (Assurrs),
make-env-from assumption(Assums),
base_env(Base env),
input -envs t~nv-choices),

( (Assums--[]

Base-env\--()

generate-env crossproducr.(Base_env,Env_choices)

generate_env cross youcUnv choices)

4.1 Com ,pute justification envi ronment

4.1.1 Make enivirontment from assumption

make env from_assumrptionUJ]):-

make_env_from_assumption(EHfTJ):
base envlBaie env),
cons_env(H,Base_env),
base-env(Nenv),
(Nenv-=(]

(retract (base env(_)
assertz(base~env(l))

ma)'._en'vfrum assumnption (T)

cons env(Assum,Env)-
ord Add element (Env,Assum,Nenv),
(environmnent(.Eind,_,Nenv, _,_

cons_env_r~t~u n2 (fie

cons env returni (Ne v)
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cons_env_returnl(Env):-
build environment CEnv),
environment (E~ind,_,Env,_,),
(check contractictory(E~ind)

(retract (base env(Senv) I,
assertz (base env C(fl

(retract(base env(Benv)),
assertS (base env(Env))

cons_env_return2(Env):
environment( (Eind,, Env,_,Contr),
(Con~tr\-[]

(retract (base env(Benv)I,
asserts (base env( C]))

(retract (base env'(Benv) ),
asserts (base env(Env))

4.1.2 Ocenrate environment cross product

generate_env cros,_product (Base env,[)]):
er,v product (Env~p),

environrnent(Ind, _,Bas'Ž_env, _, _I

(Env~p=-O

push in envyproduct (Base_envI
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((new env .mubsurned(I'nd, Envj)

check-contradictory(Irnd)

push in env~product (Base envI

(do check 3ubjunied(Ind,Envy)
push in envjproduct (Base-eniv)

generate env_cross product (Base-env, [HIT]):-
retract(base-env(_)),
13sertz (base- env(Base-env)),
append envs (H, Base-envl,

base env(Nenvl,
(Nenv=-(J

generate env crossyproduct (Nenv, T)

push in -env~product (Base-em,) :-
retract (envyproduct (Envypioduct I),
environment (Id,_,Base env, _ I

(Env~product==O

ord-add-element([J,Ind,Ep)

ord-add-element (Envyproduct,lnd,Ep)
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list-to-ord-3et (Ep,Epl),
assertz (envyproduct (Epi))

append envs (One ofi i nput enva, C]):
ret ract (base e~nv(_)),
environment(One-ofinput-envs,_,Assums, _, _I

assertz(base env(AsUznS)).
append enV3(One -of input envs,Base-env):-

environment (One of input envs ,N1, Assumi, _, _)

environment( Ind,N2,Base-env, _, _

(NIl> N2

(retract (base -env(_)),

assertz (base env(Assuml)),
make-env-from assumption (Base_env)

make-env-from assumption(Assuml)

do-check-subsumed(_,[]):-

.do check subsumed(Base env, [HIT]):-
env_subsumed(H,Base-env)

(ret ract(env~product(Envyp)),
ord-del-element(E~nv~p,H,E3),
assertz (env~product (E3)) ,
do-check-subsumed(Base-env,T)

do check subsumned (Base env,T).
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4.2 Remove subsumed envimnmerus

process__penv (Penv,,Node):-
new env(New-env),
case-one(Penv,New-env),
case-tijo(Node).

case one((],_'):-

case oneCCHIT],New_env):-
(New env-= H

order~push~penv (H)

3ub-case-one(H,New- env)

rnew-env(,Nnenv),
case-one('.Nnenv).

subýc~ase_orie(PenvNew-env)-
new env subsumed(Penv,New env)

(check-contradictory (Penv)

do - odifynew~env (Penv, New env)

new env_ýubsumed(_Penv, C]):-

fail.
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new env,_subsumed(Pen-v, H!T1):
env-subsumed(Penv,H)

new-env-subsumed(Penv,T).

do-modify new env I_, []) -

do-modify_new_env(Periv,[IHITD:-
(env-3ubsumed(H. Penv)

(retract (newen(Ne%, _env))
del-elemnent (i, New-env, N1
assertz(new_env(NiH),
orde r push._penv (Penv)

order push penv (Penv)

do modify new_env (Penv, T)

order~pushpenv(Penv):
retract (new en'v (Env)),
ord-add-element (Env, Pen,,, New_er7),
assertz(new env(rNew envI))

caetwo (Node;:
* tinsnode(Node, _ * ,Label,_, _, _, _I,

flew-env (New~en'.),
(Seteq(Label,Neq_ env)

fr'ý!trac!t (flew_en.( _ ),
a. er z (new envU)
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(del env -nodes(Label,Node,New-env),
aatd_env;_nodes(New-env,Node,Label),

*modify node_label (New envpNode),.
modify node-ott~er-fields (New env, Node)

del_env_nodes(O, _,_)

del_env_nodes((J, _,- _

del env nodes UHITJ,Node,New env):-
(subset (H,New env)

(retract (environment (P.,N,A,Enode,Contr)),
del_elernent(Node,Enode,E1),
assertz (environment (H,N,A, E1,Contr))

del -env -nodes (T,Node,New_ernv).

add-env~nodes(f], _, _)

add-env-nodes([HITJ,Node,Label)*
(subset (H, Label)

(retract(environ'ment(H,N,A,Enode,Contr)),
ord-add-element )Enode,Node,E1),
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assertz (environment (H,N,A,E1,Contr))

add env nodes ,T,Node, Label).

modify_node_label (New -env,Node):-
retract(tms node(Node,D,S, L,J,C,R,P)),

assertz(tm3_node (Node,O,S,New-env,J,C,R,P)).

%code added for the case New env-f] and Li-fH
mnodify_node_other-fields(New-env,Node):-

retract(tms -node(NodeDi, _Sl,L1,Ji,C1,Rl,Pi)),
(New env--()

(Li-=fJ

assertz(tms-node(Node,Oi,in,L1,J1,.Cl,R1,Plfl

azsertz(trns-nbde(NodeDl,out,Ll,,JiCl,R1,Pl))

assertz(tms_node(Node,D1,in,Li,J1.C1,R1,P1))
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4.2.1 Environmenh subsumed

en%__subsumed(H, (:)

env-subsumyed(-, C]):-

env subsumed([],-):-

fail.
env-subsumed(El,E2):

El--E2,

env-subsumed(El,E2):
environment(El,Nl,Assumnsl,_,_)
environtment(EZ,N2,Assuims2, _, _

(Nl <N2

fail

check assumption from-env (Assumsl,Assums2)

check assumption from-envu[], C]):-

check -assumption from-erz(_, (3):-

check-assumption from-envU,], _):-

fail.
check-assumrption from _env((HlIT1J, [H2lT2]):

(Hl1=HI2

check_assumption from-env(Tl,T2)
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(HI < H2

ckheck-aS3ump'ion-from-env(Tl, (12 1T2])

fail

4.2.2 Check contradictory envirornments

check-contradict ory(Env~ind):-
en~viroriment(Env-ind,N, _Assumis, _,Contr),
(Contr\'=(J

lookup ýnogood table( 64, Env_ind)

lookup ncgocd table (N, Env-ind):
countk(I),
nogood table (I, Cenvl,
I =< N

(subsumed-nogood(Cenv,Er~v-ind,l)

end_lookup nogood table

lookup nogood table (N, Er~v ind)

(end -lookup nogood table,
fail
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* ~end 100 kup nogood _table: -

retract(countk aux(_)),
assertz (countk_aux(O)),

subsumed-nogood(fl, _, _)

fail.,
3uo~sumed-nogood(CHIt],Env ind,I):

envasubswned (Env mnd, H)

(retract (environment (Env ind,Num,Assurns,Nodes , _Contr)),
assertz (environment (Env ind,Num,Assurns,Nodos, H))

subsumed~nogood(T,Env, ind,I).
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5 Update nogood

update nogo od (Just, NogoodNodeList): -

compute justification -env Just),
env~product (Envyproduct),

clear nogood (Env~product ,Just, NogoodNodeList).

%code adapted, before: when Envyproduct - 0 "clear_nogoci" failed
clear nogood(], _, _)

clear nogood(EHITJ,Just,NogoodNodeList):
retract (environment (H,N,Assum,Nod~es, _Cofltr)),
assertz (environment (H,N,Assum,Nodes,Ju-st)),
remove-env_from -labels (H, NogoodNodeList),
insert nogood in table (N,E4),
process nogood table (N, H),
process_env_table(N,H),
clear nogodd (T,Just, NogoodNodeList).

remove any _from-labels(Env,NogoodNodeList):
environment (Env, _N, _Assum,Nodes, _Contr.),
do delete env(Nodes,~rv,NogoodNodeList).

%code adapted, NogoodNodeList is constructed here
do-delete_env((],_,[]h--

do-delete-envU[HI'r],Env, [NoqoodNodelListj):
retrsct(tms-node(H,D,S,L,J,C,R,P)),

del_element (Env, L, L),
(Ll-=:]

(assertz(tms_node(H,D,ýout,0,J,C,.R,P)),
NogoodNode =D
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(assert z (tinsnode (H, D, S.Li,J, C, 'P1))
NoqoodNode -C

retract (node queue (Node q)),
ord_add_eleineiit (Node q,H,Nodel),

assertz (node queue (Nodel)),

do-delete env(T,Env, List).

insert nogood in_table (H_assurns,Env):
N assuns--O

(retract (nogood t~able (N_assums,Nogood)),
ord~add Telemen1tiNogood,Env,NflogoOd),
assertz(nogood~table(N-assurns,Nnogood))

5.1 Proces s nogood tables'

process nogood table,(O, _):

procesn_nogood,ýtable(129,-7

process nogood table (N,Cenv):
nogood_table (N,Noqood)j

do_test_nogood~subsumed(Nogood,Ceflv,N),
y is N+1,
process nogood table (Y,Cenv).

-----
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*do_test,_ncrqood_subsumed [jt ,_

do_test_noqood_subsumed(LHIT3,Cenv,N):

(H='=Cenv,

(env-subsumned (H, Cenv)

(dele'h_fro reorrqood_t able (N, H) ,
do-test_nogo'>d Isubs,-imed (T, Cenv, N)

do -test nogood_subsýýrr-d (T1, Cenv, N)

dele-h-from nogood table(N,H):-
retract (nogood_table (N, Noqood)),

del element (H,Nogood,Nnogoodl,
as3ert (nogood_table (N, U'nogood))

5.2 Process environment tables

process env-table(O, ):

process-env-table(129, _):

process-env table (N,Cenv):-
env -table(N,E_table),
do -test env -subsumed(t~table,N,Cenv),
Y is N+l,
process_ýenv_table(Y,Cenv).
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* % error, code added, before: every node contradictory!
do -test env -subsumed([],-_,-):

do-test env -suktumed( (H IT],N,Cenv):
environtment(H,Na,A33,No,Contr), ((Contr[J

envs3ubsumied(H,Cenv) %H subsumed by Cenv (H>-Cenv)

(retract(environment(N,Na,Ass,No,Contr)),
assertz,(environment (H,Na,ASS,No,Cenvr)),

remove-env-from -labels (H,-I,

do test env subsumed(T,N.Cenv(

((Contr (

do test-env subsumed(T,N,Cenv)

(ýetract(environment(H,Na,Ass,N0,Contr)),
assertz (environment (H,Na,Ass,No,Cenv))
do-test-e~nv-subsumed(T,N,Cenv)
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